Ideal representations of Reed--Solomon and Reed--Muller codes
Algebra i logika, Tome 51 (2012) no. 3, pp. 297-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

Reed–Solomon codes and Reed–Muller codes are represented as ideals of the group ring $S=QH$ of an elementary Abelian $p$-group $H$ over a finite field $Q=\mathbb F_q$ of characteristic $p$. Such representations of these codes are already known. Our technique differs from the previously used method in the following. There, the codes in question are represented as kernels of some homomorphisms; in other words, the codes are defined by some kind of parity check relation. Here, we explicitly specify generators for the ideals presenting the codes. In this case Reed–Muller codes are obtained by applying the trace function to some sums of one-dimensional subspaces of $_QS$ in a fixed set of $q$ such subspaces, whose sums also present Reed–Solomon codes.
Keywords: Reed–Muller codes, Reed–Solomon codes, group ring, elementary Abelian $p$-group.
@article{AL_2012_51_3_a0,
     author = {E. Couselo and S. Gonz\'alez and V. T. Markov and C. Mart{\'\i}nez and A. A. Nechaev},
     title = {Ideal representations of {Reed--Solomon} and {Reed--Muller} codes},
     journal = {Algebra i logika},
     pages = {297--320},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_3_a0/}
}
TY  - JOUR
AU  - E. Couselo
AU  - S. González
AU  - V. T. Markov
AU  - C. Martínez
AU  - A. A. Nechaev
TI  - Ideal representations of Reed--Solomon and Reed--Muller codes
JO  - Algebra i logika
PY  - 2012
SP  - 297
EP  - 320
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_3_a0/
LA  - ru
ID  - AL_2012_51_3_a0
ER  - 
%0 Journal Article
%A E. Couselo
%A S. González
%A V. T. Markov
%A C. Martínez
%A A. A. Nechaev
%T Ideal representations of Reed--Solomon and Reed--Muller codes
%J Algebra i logika
%D 2012
%P 297-320
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_3_a0/
%G ru
%F AL_2012_51_3_a0
E. Couselo; S. González; V. T. Markov; C. Martínez; A. A. Nechaev. Ideal representations of Reed--Solomon and Reed--Muller codes. Algebra i logika, Tome 51 (2012) no. 3, pp. 297-320. http://geodesic.mathdoc.fr/item/AL_2012_51_3_a0/

[1] E. F. Assmus (jun.), J. D. Key, “Polynomial codes and finite geometries”, Handbook of Coding Theory, v. II, Part 1, Algebraic coding, eds. V. S. Pless, W. Cary Huffman, Elsevier, Amsterdam, 1998, 1269–1343 | MR | Zbl

[2] P. Charpin, “Les codes de Reed–Solomon en tant qu'ideáux d'une algèbre modulaire”, C. R. Acad. Sci. Paris, Sér. I, Math., 294 (1982), 597–600 | MR | Zbl

[3] P. Charpin, “Une description des codes de Reed–Solomon dans une algèbre modulaire”, C. R. Acad. Sci. Paris, Sér. I, Math., 299 (1984), 779–782 | MR | Zbl

[4] P. Landrock, O. Manz, “Classical codes as ideals in group algebras”, Des., Codes Cryptography, 2:3 (1992), 273–285 | DOI | MR | Zbl

[5] E. Couselo, S. González, V. Markov, C. Martinez, A. Nechaev, “Some constructions of linearly optimal group codes”, Linear Algebra Appl., 433:2 (2010), 356–364 | DOI | MR | Zbl

[6] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[7] I. Lambek, Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[8] W. Heise, P. Quattrocchi, Informations- und Codierungstheorie, Mathematische Grundlagen der Daten-Kompression und Sicherung in diskreten Kommunikationssystemen, 3, neubearb. Aufl., Springer-Verlag, Berlin, 1995 | MR | Zbl

[9] J. H. van Lint, Introduction to coding theory, Grad. Texts Math., 86, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | Zbl

[10] F. Dzh. Mak-Vilyams, N. Dzh. A. Sloen, Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979 | Zbl

[11] V. N. Sachkov, Vvedenie v kombinatornye metody diskretnoi matematiki, Nauka, M., 1982 | MR | Zbl

[12] R. Lidl, G. Niderraiter, Konechnye polya, v. 1, 2, Mir, M., 1988 | Zbl

[13] M. M. Glukhov, V. P. Elizarov, A. A. Nechaev, Algebra, v. 2, Gelios ARV, M., 2003

[14] S. D. Berman, “K teorii gruppovykh kodov”, Kibernetika, 1967, no. 1, 31–39 | Zbl

[15] P. Charpin, Codes idéaux de certaines algèbres modulaires, Thèse de 3ème cycle, Univ. Paris VII, 1982