Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2012_51_2_a6, author = {L. L. Maksimova}, title = {Interpolation and the projective {Beth} property in well-composed logics}, journal = {Algebra i logika}, pages = {244--275}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a6/} }
L. L. Maksimova. Interpolation and the projective Beth property in well-composed logics. Algebra i logika, Tome 51 (2012) no. 2, pp. 244-275. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a6/
[1] I. Johansson, “Der Minimalkalktil, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR
[2] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl
[3] J. Barwise, S. Feferman (eds.), Model-theoretic logics, Perspect. Math. Log., Springer-Verlag, New York etc., 1985 | MR | Zbl
[4] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, 46, Oxford Sci. Publ., Clarendon Press, Oxford, 2005 | MR | Zbl
[5] K. Schutte, “Der Interpolationssatz der intuitionistischen Pradikatenlogik”, Math. Ann., 148 (1962), 192–200 | DOI | MR
[6] D. M. Gabbay, Semantical investigations in Heyting's intuitionistic logic, Synthese Library, 148, D. Reidel Publ. Co., Dordrecht–Boston–London, 1981 | MR | Zbl
[7] E. W. Beth, “On Padoa's method in the theory of definitions”, Indag. Math., 15:4 (1953), 330–339 | MR
[8] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl
[9] L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Logic, 105:1–3 (2000), 83–102 | DOI | MR | Zbl
[10] L. L. Maksimova, “Razreshimost proektivnogo svoistva Beta v mnogoobraziyakh geitingovykh algebr”, Algebra i logika, 40:3 (2001), 290–301 | MR | Zbl
[11] L. L. Maksimova, “Neyavnaya opredelimost i pozitivnye logiki”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl
[12] L. Maksimova, “Problem of restricted interpolation in superintuitionistic and some modal logics”, Log. J. IGPL, 18:3 (2010), 367–380 | DOI | MR | Zbl
[13] L. L. Maksimova, “Proektivnoe svoistvo Beta i interpolyatsiya v pozitivnykh i blizkikh k nim logikakh”, Algebra i logika, 45:1 (2006), 85–113 | MR | Zbl
[14] L. L. Maksimova, “Razreshimost slabogo interpolyatsionnogo svoistva nad minimalnoi logikoi”, Algebra i logika, 50:2 (2011), 152–188 | MR
[15] L. Maksimova, “Interpolation and joint consistency”, We will show them!, Essays in honour of Dov Gabbay, v. 2, eds. S. Artemov et al., King's College Publ., London, 2005, 293–305
[16] L. L. Maksimova, “Sovmestnaya neprotivorechivost v rasshireniyakh minimalnoi logiki”, Sib. matem. zh., 51:3 (2010), 604–619 | MR | Zbl
[17] L. Maksimova, “Interpolation and definability over the logic Gl”, Stud. Log., 99:1–3 (2011), 249–267 | DOI | MR | Zbl
[18] L. L. Maksimova, “Interpolyatsiya i opredelimost v rasshireniyakh minimalnoi logiki”, Algebra i logika, 44:6 (2005), 726–750 | MR | Zbl
[19] L. L. Maksimova, “Proektivnye svoistva Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333 | MR | Zbl
[20] G. Kreisel, “Explicit definability in intuitionistic logic”, J. Symb. Log., 25 (1960), 389–390 | DOI
[21] L. Maksimova, “Restricted interpolation in modal logics”, Advances in modal logic, v. 4, eds. Ph. Balbiani et al., King's College Publ., London, 2003, 297–311 | MR | Zbl
[22] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR
[23] S. Miura, “A remark on the intersection of two logics”, Nagoya Math. J., 26 (1966), 167–171 | MR | Zbl
[24] S. Odintsov, “Logic of classical refutability and class of extensions of minimal logic”, Log. Log. Philos., 9 (2001), 91–107 | MR | Zbl
[25] L. L. Maksimova, “Slabaya forma interpolyatsii v ekvatsionalnoi logike”, Algebra i logika, 47:1 (2008), 94–107 | MR | Zbl
[26] B. Jonsson, “Algebras whose congruence lattices are distributive”, Mathem. Scand., 21 (1967), 110–121 | MR | Zbl