Interpolation and the projective Beth property in well-composed logics
Algebra i logika, Tome 51 (2012) no. 2, pp. 244-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the interpolation and Beth definability problems in propositional extensions of minimal logic J. Previously, all J-logics with the weak interpolation property (WIP) were described, and it was proved that WIP is decidable over J. In this paper, we deal with so-called well-composed J-logics, i.e., J-logics satisfying the axiom $(\bot\to A)\vee(A\to\bot)$. Representation theorems are proved for well-composed logics possessing Craig's interpolation property (CIP) and the restricted interpolation property (IPR). As a consequence it is shown that only finitely many well-composed logics share these properties, and that IPR is equivalent to the projective Beth property (PBP) on the class of well-composed J-logics.
Keywords: well-composed J-logic, Beth definability.
Mots-clés : interpolation
@article{AL_2012_51_2_a6,
     author = {L. L. Maksimova},
     title = {Interpolation and the projective {Beth} property in well-composed logics},
     journal = {Algebra i logika},
     pages = {244--275},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a6/}
}
TY  - JOUR
AU  - L. L. Maksimova
TI  - Interpolation and the projective Beth property in well-composed logics
JO  - Algebra i logika
PY  - 2012
SP  - 244
EP  - 275
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_2_a6/
LA  - ru
ID  - AL_2012_51_2_a6
ER  - 
%0 Journal Article
%A L. L. Maksimova
%T Interpolation and the projective Beth property in well-composed logics
%J Algebra i logika
%D 2012
%P 244-275
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_2_a6/
%G ru
%F AL_2012_51_2_a6
L. L. Maksimova. Interpolation and the projective Beth property in well-composed logics. Algebra i logika, Tome 51 (2012) no. 2, pp. 244-275. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a6/

[1] I. Johansson, “Der Minimalkalktil, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR

[2] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[3] J. Barwise, S. Feferman (eds.), Model-theoretic logics, Perspect. Math. Log., Springer-Verlag, New York etc., 1985 | MR | Zbl

[4] D. M. Gabbay, L. Maksimova, Interpolation and definability: modal and intuitionistic logics, Oxford Logic Guides, 46, Oxford Sci. Publ., Clarendon Press, Oxford, 2005 | MR | Zbl

[5] K. Schutte, “Der Interpolationssatz der intuitionistischen Pradikatenlogik”, Math. Ann., 148 (1962), 192–200 | DOI | MR

[6] D. M. Gabbay, Semantical investigations in Heyting's intuitionistic logic, Synthese Library, 148, D. Reidel Publ. Co., Dordrecht–Boston–London, 1981 | MR | Zbl

[7] E. W. Beth, “On Padoa's method in the theory of definitions”, Indag. Math., 15:4 (1953), 330–339 | MR

[8] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[9] L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Logic, 105:1–3 (2000), 83–102 | DOI | MR | Zbl

[10] L. L. Maksimova, “Razreshimost proektivnogo svoistva Beta v mnogoobraziyakh geitingovykh algebr”, Algebra i logika, 40:3 (2001), 290–301 | MR | Zbl

[11] L. L. Maksimova, “Neyavnaya opredelimost i pozitivnye logiki”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl

[12] L. Maksimova, “Problem of restricted interpolation in superintuitionistic and some modal logics”, Log. J. IGPL, 18:3 (2010), 367–380 | DOI | MR | Zbl

[13] L. L. Maksimova, “Proektivnoe svoistvo Beta i interpolyatsiya v pozitivnykh i blizkikh k nim logikakh”, Algebra i logika, 45:1 (2006), 85–113 | MR | Zbl

[14] L. L. Maksimova, “Razreshimost slabogo interpolyatsionnogo svoistva nad minimalnoi logikoi”, Algebra i logika, 50:2 (2011), 152–188 | MR

[15] L. Maksimova, “Interpolation and joint consistency”, We will show them!, Essays in honour of Dov Gabbay, v. 2, eds. S. Artemov et al., King's College Publ., London, 2005, 293–305

[16] L. L. Maksimova, “Sovmestnaya neprotivorechivost v rasshireniyakh minimalnoi logiki”, Sib. matem. zh., 51:3 (2010), 604–619 | MR | Zbl

[17] L. Maksimova, “Interpolation and definability over the logic Gl”, Stud. Log., 99:1–3 (2011), 249–267 | DOI | MR | Zbl

[18] L. L. Maksimova, “Interpolyatsiya i opredelimost v rasshireniyakh minimalnoi logiki”, Algebra i logika, 44:6 (2005), 726–750 | MR | Zbl

[19] L. L. Maksimova, “Proektivnye svoistva Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333 | MR | Zbl

[20] G. Kreisel, “Explicit definability in intuitionistic logic”, J. Symb. Log., 25 (1960), 389–390 | DOI

[21] L. Maksimova, “Restricted interpolation in modal logics”, Advances in modal logic, v. 4, eds. Ph. Balbiani et al., King's College Publ., London, 2003, 297–311 | MR | Zbl

[22] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[23] S. Miura, “A remark on the intersection of two logics”, Nagoya Math. J., 26 (1966), 167–171 | MR | Zbl

[24] S. Odintsov, “Logic of classical refutability and class of extensions of minimal logic”, Log. Log. Philos., 9 (2001), 91–107 | MR | Zbl

[25] L. L. Maksimova, “Slabaya forma interpolyatsii v ekvatsionalnoi logike”, Algebra i logika, 47:1 (2008), 94–107 | MR | Zbl

[26] B. Jonsson, “Algebras whose congruence lattices are distributive”, Mathem. Scand., 21 (1967), 110–121 | MR | Zbl