A criterion of unrecognizability by spectrum for finite groups
Algebra i logika, Tome 51 (2012) no. 2, pp. 239-243
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a finite group $G$ is unrecognizable by spectrum if and only if there exists a group isospectral to $G$ containing a nontrivial soluble normal subgroup.
Keywords:
finite group, soluble normal subgroup, spectrum.
@article{AL_2012_51_2_a5,
author = {V. D. Mazurov and W. J. Shi},
title = {A criterion of unrecognizability by spectrum for finite groups},
journal = {Algebra i logika},
pages = {239--243},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a5/}
}
V. D. Mazurov; W. J. Shi. A criterion of unrecognizability by spectrum for finite groups. Algebra i logika, Tome 51 (2012) no. 2, pp. 239-243. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a5/