A criterion of unrecognizability by spectrum for finite groups
Algebra i logika, Tome 51 (2012) no. 2, pp. 239-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a finite group $G$ is unrecognizable by spectrum if and only if there exists a group isospectral to $G$ containing a nontrivial soluble normal subgroup.
Keywords: finite group, soluble normal subgroup, spectrum.
@article{AL_2012_51_2_a5,
     author = {V. D. Mazurov and W. J. Shi},
     title = {A criterion of unrecognizability by spectrum for finite groups},
     journal = {Algebra i logika},
     pages = {239--243},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a5/}
}
TY  - JOUR
AU  - V. D. Mazurov
AU  - W. J. Shi
TI  - A criterion of unrecognizability by spectrum for finite groups
JO  - Algebra i logika
PY  - 2012
SP  - 239
EP  - 243
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_2_a5/
LA  - ru
ID  - AL_2012_51_2_a5
ER  - 
%0 Journal Article
%A V. D. Mazurov
%A W. J. Shi
%T A criterion of unrecognizability by spectrum for finite groups
%J Algebra i logika
%D 2012
%P 239-243
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_2_a5/
%G ru
%F AL_2012_51_2_a5
V. D. Mazurov; W. J. Shi. A criterion of unrecognizability by spectrum for finite groups. Algebra i logika, Tome 51 (2012) no. 2, pp. 239-243. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a5/

[1] V. D. Mazurov, “O mnozhestve poryadkov elementov konechnoi gruppy”, Algebra i logika, 33:1 (1994), 81–89 | MR | Zbl

[2] P. Hall, G. Higman, “On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. Lond. Math. Soc. III Ser., 6:1 (1956), 1–42 | DOI | MR | Zbl

[3] E. I. Zelmanov, “Reshenie oslablennoi problemy Bernsaida dlya 2-grupp”, Matem. sb., 182:4 (1991), 568–592 | MR | Zbl

[4] A. A. Buturlakin, “Isospectral finite simple groups”, Sib. elektron. matem. izv., 7 (2010), 111–114 | MR