A criterion of unrecognizability by spectrum for finite groups
Algebra i logika, Tome 51 (2012) no. 2, pp. 239-243
It is proved that a finite group $G$ is unrecognizable by spectrum if and only if there exists a group isospectral to $G$ containing a nontrivial soluble normal subgroup.
Keywords:
finite group, soluble normal subgroup, spectrum.
@article{AL_2012_51_2_a5,
author = {V. D. Mazurov and W. J. Shi},
title = {A criterion of unrecognizability by spectrum for finite groups},
journal = {Algebra i logika},
pages = {239--243},
year = {2012},
volume = {51},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2012_51_2_a5/}
}
V. D. Mazurov; W. J. Shi. A criterion of unrecognizability by spectrum for finite groups. Algebra i logika, Tome 51 (2012) no. 2, pp. 239-243. http://geodesic.mathdoc.fr/item/AL_2012_51_2_a5/
[1] V. D. Mazurov, “O mnozhestve poryadkov elementov konechnoi gruppy”, Algebra i logika, 33:1 (1994), 81–89 | MR | Zbl
[2] P. Hall, G. Higman, “On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem”, Proc. Lond. Math. Soc. III Ser., 6:1 (1956), 1–42 | DOI | MR | Zbl
[3] E. I. Zelmanov, “Reshenie oslablennoi problemy Bernsaida dlya 2-grupp”, Matem. sb., 182:4 (1991), 568–592 | MR | Zbl
[4] A. A. Buturlakin, “Isospectral finite simple groups”, Sib. elektron. matem. izv., 7 (2010), 111–114 | MR