$\Sigma$-uniform structures and $\Sigma$-functions.~II
Algebra i logika, Tome 51 (2012) no. 1, pp. 129-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a family of $\Sigma$-uniform Abelian groups and a family of $\Sigma$-uniform rings. Conditions are specified that are necessary and sufficient for a universal $\Sigma$-function to exist in a hereditarily finite admissible set over structures in these families. It is proved that there is a set $S$ of primes such that no universal $\Sigma$-function exists in hereditarily finite admissible sets $\mathbb{HF}(G)$ and $\mathbb{HF}(K)$, where $G=\oplus\{Z_p\mid p\in S\}$ is a group, $Z_p$ is a cyclic group of order $p$, $K=\oplus\{F_p\mid p\in S\}$ is a ring, and $F_p$ is a prime field of characteristic $p$.
Keywords: hereditarily finite admissible set, $\Sigma$-definability, universal $\Sigma$-function, $\Sigma$-uniform structure, Abelian group, ring.
@article{AL_2012_51_1_a5,
     author = {A. N. Khisamiev},
     title = {$\Sigma$-uniform structures and $\Sigma${-functions.~II}},
     journal = {Algebra i logika},
     pages = {129--147},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2012_51_1_a5/}
}
TY  - JOUR
AU  - A. N. Khisamiev
TI  - $\Sigma$-uniform structures and $\Sigma$-functions.~II
JO  - Algebra i logika
PY  - 2012
SP  - 129
EP  - 147
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2012_51_1_a5/
LA  - ru
ID  - AL_2012_51_1_a5
ER  - 
%0 Journal Article
%A A. N. Khisamiev
%T $\Sigma$-uniform structures and $\Sigma$-functions.~II
%J Algebra i logika
%D 2012
%P 129-147
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2012_51_1_a5/
%G ru
%F AL_2012_51_1_a5
A. N. Khisamiev. $\Sigma$-uniform structures and $\Sigma$-functions.~II. Algebra i logika, Tome 51 (2012) no. 1, pp. 129-147. http://geodesic.mathdoc.fr/item/AL_2012_51_1_a5/

[1] A. N. Khisamiev, “$\Sigma$-odnorodnye algebraicheskie sistemy i $\Sigma$-funktsii. I”, Algebra i logika, 50:5 (2011), 659–684 | MR

[2] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, 2-oe izd., Nauchnaya kniga, Novosibirsk; Ekonomika, M., 2000 | MR

[3] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[4] B. L. Van der Varden, Algebra, Lan, SPb, 2004

[5] A. S. Morozov, V. G. Puzarenko, “O $\Sigma$-podmnozhestvakh naturalnykh chisel”, Algebra i logika, 43:3 (2004), 291–320 | MR | Zbl

[6] I. Sh. Kalimullin, V. G. Puzarenko, “O printsipakh vychislimosti na dopustimykh mnozhestvakh”, Matem. tr., 7:2 (2004), 35–71 | MR | Zbl