Universal theories for rigid soluble groups
Algebra i logika, Tome 50 (2011) no. 6, pp. 802-821.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group is said to be $p$-rigid, where $p$ is a natural number, if it has a normal series of the form $$ G=G_1>G_2>\dots>G_p>G_{p+1}=1, $$ whose quotients $G_i/G_{i+1}$ are Abelian and are torsion free when treated as $\mathbb Z[G/G_i]$-modules. Examples of rigid groups are free soluble groups. We point out a recursive system of universal axioms distinguishing $p$-rigid groups in the class of $p$-soluble groups. It is proved that if $F$ is a free $p$-soluble group, $G$ is an arbitrary $p$-rigid group, and $W$ is an iterated wreath product of $p$ infinite cyclic groups, then $\forall$-theories for these groups satisfy the inclusions $$ \mathcal A(F)\supseteq\mathcal A(G)\supseteq\mathcal A(W). $$ We construct an $\exists$-axiom distinguishing among $p$-rigid groups those that are universally equivalent to $W$. An arbitrary $p$-rigid group embeds in a divisible decomposed $p$-rigid group $M=M(\alpha_ 1,\dots,\alpha_ p)$. The latter group factors into a semidirect product of Abelian groups $A_1A_2\dots A_p$, in which case every quotient $M_i/M_{i+1}$ of its rigid series is isomorphic to $A_i$ and is a divisible module of rank $\alpha_i$ over a ring $\mathbb Z[M/M_i]$. We specify a recursive system of axioms distinguishing among $M$-groups those that are Muniversally equivalent to $M$. As a consequence, it is stated that the universal theory of $M$ with constants in $M$ is decidable. By contrast, the universal theory of $W$ with constants is undecidable.
Mots-clés : $p$-rigid group
Keywords: universal theory of group, decidable theory.
@article{AL_2011_50_6_a6,
     author = {A. G. Myasnikov and N. S. Romanovskii},
     title = {Universal theories for rigid soluble groups},
     journal = {Algebra i logika},
     pages = {802--821},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_6_a6/}
}
TY  - JOUR
AU  - A. G. Myasnikov
AU  - N. S. Romanovskii
TI  - Universal theories for rigid soluble groups
JO  - Algebra i logika
PY  - 2011
SP  - 802
EP  - 821
VL  - 50
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_6_a6/
LA  - ru
ID  - AL_2011_50_6_a6
ER  - 
%0 Journal Article
%A A. G. Myasnikov
%A N. S. Romanovskii
%T Universal theories for rigid soluble groups
%J Algebra i logika
%D 2011
%P 802-821
%V 50
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_6_a6/
%G ru
%F AL_2011_50_6_a6
A. G. Myasnikov; N. S. Romanovskii. Universal theories for rigid soluble groups. Algebra i logika, Tome 50 (2011) no. 6, pp. 802-821. http://geodesic.mathdoc.fr/item/AL_2011_50_6_a6/

[1] A. I. Maltsev, “O svobodnykh razreshimykh gruppakh”, Dokl. AN SSSR, 130:3 (1960), 495–498

[2] O. Chapuis, “Universal theory of certain solvable groups and bounded Ore group rings”, J. Algebra, 176:2 (1995), 368–391 | DOI | MR | Zbl

[3] O. Chapuis, “$\forall$-free metabelian groups”, J. Symb. Log., 62:1 (1997), 159–174 | DOI | MR | Zbl

[4] O. Chapuis, “On the theories of free solvable groups”, J. Pure Appl. Algebra, 131:1 (1998), 13–24 | DOI | MR | Zbl

[5] V. Remeslennikov, R. Stohr, “On the quasivariety generated by a non-cyclic free metabelian group”, Algebra Colloq., 11:2 (2004), 191–214 | MR | Zbl

[6] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[7] Ch. K. Gupta, N. S. Romanovskii, “Nëterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl

[8] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR

[9] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR

[10] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR

[11] N. S. Romanovskii, “Koproizvedeniya zhëstkikh grupp”, Algebra i logika, 49:6 (2010), 803–818 | MR

[12] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[13] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl

[14] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem on soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | MR | Zbl

[15] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[16] V. A. Romankov, “Ob uravneniyakh v svobodnykh metabelevykh gruppakh”, Sib. matem. zh., 20:3 (1979), 671–673 | MR

[17] Yu. V. Matiyasevich, “Diofantovost perechislimykh mnozhestv”, Dokl. AN SSSR, 191:2 (1970), 279–282 | MR | Zbl