Positive undecidable numberings in the Ershov hierarchy
Algebra i logika, Tome 50 (2011) no. 6, pp. 759-780

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition is given under which an infinite computable family of $\Sigma_a^{-1}$-sets has computable positive but undecidable numberings, where $a$ is a notation for a nonzero computable ordinal. This extends a theorem proved by Talasbaeva in [Algebra and Logic, 42, No. 6 (2003), 737–746] for finite levels of the Ershov hierarchy. As a consequence, it is stated that the family of all $\Sigma_a^{-1}$-sets has a computable positive undecidable numbering. In addition, for every ordinal notation $a>1$, an infinite family of $\Sigma_a^{-1}$-sets is constructed which possesses a computable positive numbering but has no computable Friedberg numberings. This answers the question of whether such families exist at any – finite or infinite – level of the Ershov hierarchy, which was originally raised by Badaev and Goncharov only for the finite levels bigger than 1.
Keywords: Ershov hierarchy, positive undecidable numbering.
@article{AL_2011_50_6_a4,
     author = {M. Manat and A. Sorbi},
     title = {Positive undecidable numberings in the {Ershov} hierarchy},
     journal = {Algebra i logika},
     pages = {759--780},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_6_a4/}
}
TY  - JOUR
AU  - M. Manat
AU  - A. Sorbi
TI  - Positive undecidable numberings in the Ershov hierarchy
JO  - Algebra i logika
PY  - 2011
SP  - 759
EP  - 780
VL  - 50
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_6_a4/
LA  - ru
ID  - AL_2011_50_6_a4
ER  - 
%0 Journal Article
%A M. Manat
%A A. Sorbi
%T Positive undecidable numberings in the Ershov hierarchy
%J Algebra i logika
%D 2011
%P 759-780
%V 50
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_6_a4/
%G ru
%F AL_2011_50_6_a4
M. Manat; A. Sorbi. Positive undecidable numberings in the Ershov hierarchy. Algebra i logika, Tome 50 (2011) no. 6, pp. 759-780. http://geodesic.mathdoc.fr/item/AL_2011_50_6_a4/