Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2011_50_6_a2, author = {J. Carson and E. Fokina and V. S. Harizanov and J. F. Knight and S. Quinn and C. Safranski and J. Wallbaum}, title = {The computable embedding problem}, journal = {Algebra i logika}, pages = {707--732}, publisher = {mathdoc}, volume = {50}, number = {6}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2011_50_6_a2/} }
TY - JOUR AU - J. Carson AU - E. Fokina AU - V. S. Harizanov AU - J. F. Knight AU - S. Quinn AU - C. Safranski AU - J. Wallbaum TI - The computable embedding problem JO - Algebra i logika PY - 2011 SP - 707 EP - 732 VL - 50 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2011_50_6_a2/ LA - ru ID - AL_2011_50_6_a2 ER -
J. Carson; E. Fokina; V. S. Harizanov; J. F. Knight; S. Quinn; C. Safranski; J. Wallbaum. The computable embedding problem. Algebra i logika, Tome 50 (2011) no. 6, pp. 707-732. http://geodesic.mathdoc.fr/item/AL_2011_50_6_a2/
[1] S. S. Goncharov, Dzh. Nait, “Vychislimye strukturnye i antistrukturnye teoremy”, Algebra i logika, 41:6 (2002), 639–681 | MR | Zbl
[2] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Stud. Logic Found. Math., 144, Elsevier Sci. B.V., Amsterdam etc., 2000 | MR | Zbl
[3] R. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967 ; Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR | Zbl | MR
[4] W. Calvert, Algebraic structure and computable structure, PhD thesis, Notre Dame Univ., 2005 | MR
[5] W. Calvert, “The isomorphism problem for classes of computable fields”, Arch. Math. Log., 43:3 (2004), 327–336 | DOI | MR | Zbl
[6] W. Calvert, “The isomorphism problem for computable Abelian $p$-groups of bounded length”, J. Symb. Log., 70:1 (2005), 331–345 | DOI | MR | Zbl
[7] J. F. Knight, S. Miller, M. Vanden Boom, “Turing computable embeddings”, J. Symb. Log., 72:3 (2007), 901–918 | DOI | MR | Zbl
[8] R. Downey, A. Montalbán, “The isomorphism problem for torsion free Abelian groups is analytic complete”, J. Algebra, 320:6 (2008), 2291–2300 | DOI | MR | Zbl
[9] V. Harizanov, S. Lempp, C. F. D. McCoy, A. S. Morozov, D. Reed Solomon, On the isomorphism problem for nilpotent rings, distributive lattices, nilpotent groups, and nilpotent semigroups, preprint
[10] D. Marker, Model theory: An Introduction, Grad. Texts Math., 217, Springer-Verlag, New York, 2002 | MR | Zbl
[11] U. Kalvert, D. Kammins, Dzh. F. Nait, S. Miller, “Sravnenie klassov konechnykh struktur”, Algebra i logika, 43:6 (2004), 666–701 | MR | Zbl
[12] H. Friedman, L. Stanley, “A Borel reducibility theory for classes of countable structures”, J. Symb. Log., 54:3 (1989), 894–914 | DOI | MR | Zbl
[13] A. I. Maltsev, “Ob odnom sootvetstvii mezhdu koltsami i gruppami”, Matem. cb., 50(92):3 (1960), 257–266 ; A. Mal'cev, “On a correspondence between rings and groups”, Am. Math. Soc. Trans. Ser. 2, 45, 1965, 221–232 | MR | Zbl
[14] D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, A. M. Slinko, “Degree spectra and computable dimensions in algebraic structures”, Ann. Pure Appl. Logic, 115:1–3 (2002), 71–113 | DOI | MR | Zbl
[15] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergebn. Math. Grenzg., 89, Springer-Verlag, Berlin–Heidelberg–New York, 1977 ; R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR | Zbl | MR
[16] G. Higman, B. H. Neumann, H. Neumann, “Embedding theorems for groups”, J. Lond. Math. Soc., 24 (1950), 247–254 | DOI | MR | Zbl
[17] G. S. Sacerdote, “Elementary properties of free groups”, Trans. Am. Math. Soc., 178 (1973), 127–138 | DOI | MR | Zbl
[18] W. Calvert, D. Cenzer, V. Harizanov, A. Morozov, “Effective categoricity of equivalence structures”, Ann. Pure Appl. Logic, 141:1–2 (2006), 61–78 | DOI | MR | Zbl
[19] C. J. Ash, J. F. Knight, “Pairs of recursive structures”, Ann. Pure Appl. Logic, 46:3 (1990), 211–234 | DOI | MR | Zbl
[20] A. T. Nurtazin, Vychislimye klassy i algebraicheskii kriterii avtoustoichivosti, Kand. diss., In-t matem. mekh., Alma-Ata, 1974