The computable embedding problem
Algebra i logika, Tome 50 (2011) no. 6, pp. 707-732

Voir la notice de l'article provenant de la source Math-Net.Ru

Calvert calculated the complexity of the computable isomorphism problem for a number of familiar classes of structures. Rosendal suggested that it might be interesting to do the same for the computable embedding problem. By the computable isomorphism problem and (computable embedding problem) we mean the difficulty of determining whether there exists an isomorphism (embedding) between two members of a class of computable structures. For some classes, such as the class of $\mathbb Q$-vector spaces and the class of linear orderings, it turns out that the two problems have the same complexity. Moreover, calculations are essentially the same. For other classes, there are differences. We present examples in which the embedding problem is trivial (within the class) and the computable isomorphism problem is more complicated. We also give an example in which the embedding problem is more complicated than the isomorphism problem.
Keywords: computable structure, computable isomorphism problem, computable embedding problem.
@article{AL_2011_50_6_a2,
     author = {J. Carson and E. Fokina and V. S. Harizanov and J. F. Knight and S. Quinn and C. Safranski and J. Wallbaum},
     title = {The computable embedding problem},
     journal = {Algebra i logika},
     pages = {707--732},
     publisher = {mathdoc},
     volume = {50},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_6_a2/}
}
TY  - JOUR
AU  - J. Carson
AU  - E. Fokina
AU  - V. S. Harizanov
AU  - J. F. Knight
AU  - S. Quinn
AU  - C. Safranski
AU  - J. Wallbaum
TI  - The computable embedding problem
JO  - Algebra i logika
PY  - 2011
SP  - 707
EP  - 732
VL  - 50
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_6_a2/
LA  - ru
ID  - AL_2011_50_6_a2
ER  - 
%0 Journal Article
%A J. Carson
%A E. Fokina
%A V. S. Harizanov
%A J. F. Knight
%A S. Quinn
%A C. Safranski
%A J. Wallbaum
%T The computable embedding problem
%J Algebra i logika
%D 2011
%P 707-732
%V 50
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_6_a2/
%G ru
%F AL_2011_50_6_a2
J. Carson; E. Fokina; V. S. Harizanov; J. F. Knight; S. Quinn; C. Safranski; J. Wallbaum. The computable embedding problem. Algebra i logika, Tome 50 (2011) no. 6, pp. 707-732. http://geodesic.mathdoc.fr/item/AL_2011_50_6_a2/