Abelian groups of monotonic permutations
Algebra i logika, Tome 50 (2011) no. 4, pp. 497-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $m$-transitive representations of Abelian $m$-groups. Representations are found which mimic a variety $\mathcal A$ of all Abelian $m$-groups and a variety $\mathcal J$ of $m$-groups defined by an identity $x_*=x^{-1}$.
Keywords: abelian $m$-group, representation, mimicking.
@article{AL_2011_50_4_a2,
     author = {A. V. Zenkov},
     title = {Abelian groups of monotonic permutations},
     journal = {Algebra i logika},
     pages = {497--503},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_4_a2/}
}
TY  - JOUR
AU  - A. V. Zenkov
TI  - Abelian groups of monotonic permutations
JO  - Algebra i logika
PY  - 2011
SP  - 497
EP  - 503
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_4_a2/
LA  - ru
ID  - AL_2011_50_4_a2
ER  - 
%0 Journal Article
%A A. V. Zenkov
%T Abelian groups of monotonic permutations
%J Algebra i logika
%D 2011
%P 497-503
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_4_a2/
%G ru
%F AL_2011_50_4_a2
A. V. Zenkov. Abelian groups of monotonic permutations. Algebra i logika, Tome 50 (2011) no. 4, pp. 497-503. http://geodesic.mathdoc.fr/item/AL_2011_50_4_a2/

[1] M. Giraudet, J. Rachunek, “Varieties of half lattice-ordered groups of monotonic permutations of chains”, Czech. Math. J., 49:4 (1999), 743–766 | DOI | MR | Zbl

[2] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[3] V. M. Kopytov, N. Ya. Medvedev, The theory of lattice-ordered groups, Math. Its Appl., 307, Kluwer Academic Publ., Dordrecht, 1994 | MR | Zbl

[4] N. Ya. Medvedev, Spleteniya i mnogoobraziya reshetochno uporyadochennykh grupp, Izd-vo Alt. un-ta, Barnaul, 1990

[5] N. V. Bayanova, O. V. Nikonova, “Reversivnye avtomorfizmy reshetochno uporyadochennykh grupp”, Sib. matem. zh., 36:4 (1995), 763–768 | MR | Zbl