Dimonoids
Algebra i logika, Tome 50 (2011) no. 4, pp. 471-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a system of axioms for a dimonoid is independent and Cayley's theorem for semigroups has an analog in the class of dimonoids. A least separative congruence is constructed on an arbitrary dimonoid endowed with a commutative operation. It is shown that an appropriate quotient dimonoid is a commutative separative semigroup. A least separative congruence on a free commutative dimonoid is characterized. It is stated that each dimonoid with a commutative operation is a semilattice of Archimedean subdimonoids, each dimonoid with a commutative periodic semigroup is a semilattice of unipotent subdimonoids, and each dimonoid with a commutative operation is a semilattice of $a$-connected subdimonoids. Different dimonoid constructions are presented.
Keywords: dimonoid, dimonoid with commutative operation, free commutative dimonoid, semilattice of subdimonoids, semigroup.
@article{AL_2011_50_4_a1,
     author = {A. V. Zhuchok},
     title = {Dimonoids},
     journal = {Algebra i logika},
     pages = {471--496},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_4_a1/}
}
TY  - JOUR
AU  - A. V. Zhuchok
TI  - Dimonoids
JO  - Algebra i logika
PY  - 2011
SP  - 471
EP  - 496
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_4_a1/
LA  - ru
ID  - AL_2011_50_4_a1
ER  - 
%0 Journal Article
%A A. V. Zhuchok
%T Dimonoids
%J Algebra i logika
%D 2011
%P 471-496
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_4_a1/
%G ru
%F AL_2011_50_4_a1
A. V. Zhuchok. Dimonoids. Algebra i logika, Tome 50 (2011) no. 4, pp. 471-496. http://geodesic.mathdoc.fr/item/AL_2011_50_4_a1/

[1] J.-L. Loday, “Une version non commutative des algèbres de Lie: Les algèbres de Leibniz”, Enseign. Math. (2), 39:3–4 (1993), 269–293 | MR | Zbl

[2] J.-L. Loday, “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, eds. J.-L. Loday et al., Springer-Verlag, Berlin, 2001, 7–66 | MR | Zbl

[3] L. A. Bokut, Yuqun Chen, Cihua Liu, “Gröbner–Shirshov bases for dialgebras”, Int. J. Algebra Comput., 20:3 (2010), 391–415 | DOI | MR | Zbl

[4] P. S. Kolesnikov, “Mnogoobraziya dialgebr i konformnye algebry”, Sib. matem. zh., 49:2 (2008), 323–339 | MR | Zbl

[5] A. P. Pozhidaev, “Dialgebry i svyazannye s nimi troinye sistemy”, Sib. matem. zh., 49:4 (2008), 870–885 | MR | Zbl

[6] R. Felipe, “Generalized Loday algebras and digroups”, Comun. CIMAT, I-04-01/21-01-2004

[7] V. G. Kac, Vertex algebras for beginners, Univ. Lect. Ser., 10, Am. Math. Soc., Providence, RI, 1996

[8] V. Ginzburg, M. Kapranov, “Kozul duality for operads”, Duke Math. J., 76:1 (1994), 203–272 | DOI | MR | Zbl

[9] K. Liu, A class of ring-like objects, submitted, arXiv: math.RA/0311396

[10] A. V. Zhuchok, “Commutative dimonoids”, Algebra Discrete Math., 8:2 (2009), 116–127 | MR

[11] A. V. Zhuchok, “Free commutative dimonoids”, Algebra Discrete Math., 9:1 (2010), 109–119 | MR

[12] A. V. Zhuchok, “Dibands of subdimonoids”, Mat. Stud., 33:2 (2010), 120–124 | MR | Zbl

[13] A. H. Clifford, G. B. Preston, The algebraic theory of semigroups, v. 1, Math. Surv., 7, Am. Math. Soc., Providence, RI, 1961 | MR | Zbl

[14] E. Hewitt, H. S. Zuckerman, “The $l_1$-algebra of a commutative semigroup”, Trans. Am. Math. Soc., 83 (1956), 70–97 | MR | Zbl

[15] Sh. Shvarts, “K teorii periodicheckikh polugrupp”, Chekhosl. matem. zh., 3:78 (1953), 7–21

[16] P. V. Protić, N. Stevanović, “Some decompositions of semigroups”, Mat. Vesn., 61:2 (2009), 153–158 | MR | Zbl

[17] T. Tamura, N. Kimura, “On decompositions of a commutative semigroup”, Kodai Math. Semin. Rep., 6:4 (1954), 109–112 | DOI | MR | Zbl