Cocliques of maximal size in the prime graph of a~finite simple group
Algebra i logika, Tome 50 (2011) no. 4, pp. 425-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

A prime graph of a finite group is defined in the following way: the set of vertices of the graph is the set of prime divisors of the order of the group, and two distinct vertices $r$ and $s$ are joined by an edge if there is an element of order $rs$ in the group. We describe all cocliques of maximal size for finite simple groups.
Keywords: finite simple group, group of Lie type, prime graph
Mots-clés : coclique.
@article{AL_2011_50_4_a0,
     author = {A. V. Vasil'ev and E. P. Vdovin},
     title = {Cocliques of maximal size in the prime graph of a~finite simple group},
     journal = {Algebra i logika},
     pages = {425--470},
     publisher = {mathdoc},
     volume = {50},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_4_a0/}
}
TY  - JOUR
AU  - A. V. Vasil'ev
AU  - E. P. Vdovin
TI  - Cocliques of maximal size in the prime graph of a~finite simple group
JO  - Algebra i logika
PY  - 2011
SP  - 425
EP  - 470
VL  - 50
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_4_a0/
LA  - ru
ID  - AL_2011_50_4_a0
ER  - 
%0 Journal Article
%A A. V. Vasil'ev
%A E. P. Vdovin
%T Cocliques of maximal size in the prime graph of a~finite simple group
%J Algebra i logika
%D 2011
%P 425-470
%V 50
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_4_a0/
%G ru
%F AL_2011_50_4_a0
A. V. Vasil'ev; E. P. Vdovin. Cocliques of maximal size in the prime graph of a~finite simple group. Algebra i logika, Tome 50 (2011) no. 4, pp. 425-470. http://geodesic.mathdoc.fr/item/AL_2011_50_4_a0/

[1] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy group”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[3] The GAP Group, GAP – Groups, algorithms, and programming, Vers. 4.4.12, 2008 http://www.gap-system.org

[4] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[5] M. Roitman, “On Zsigmondy primes”, Proc. Am. Math. Soc., 125:7 (1997), 1913–1919 | DOI | MR | Zbl

[6] A. V. Zavarnitsine, “Recognition of the simple groups $L_3(q)$ by element orders”, J. Group Theory, 7:1 (2004), 81–97 | DOI | MR | Zbl

[7] A. S. Kondratev, “Podgruppy konechnykh grupp Shevalle”, UMN, 41:1(247) (1986), 57–96 | MR | Zbl

[8] R. W. Carter, “Conjugacy classes in the Weyl group”, Compos. Math., 25:1 (1972), 1–59 | MR | Zbl

[9] A. V. Zavarnitsin, “O raspoznavanii konechnykh grupp po grafu prostykh chisel”, Algebra i logika, 45:4 (2006), 390–408 | MR | Zbl