Turing jumps in the Ershov hierarchy
Algebra i logika, Tome 50 (2011) no. 3, pp. 399-414

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at infinite levels of the Ershov hierarchy in the natural system of notation, which are proper for jumps of sets. It is proved that proper infinite levels for jumps are confined to $\Delta^{-1}_a$-levels, where $a$ stands for an ordinal $\omega^n>1$.
Keywords: Turing jumps, Ershov hierarchy, constructive ordinals, superlow sets.
@article{AL_2011_50_3_a6,
     author = {M. Kh. Faizrakhmanov},
     title = {Turing jumps in the {Ershov} hierarchy},
     journal = {Algebra i logika},
     pages = {399--414},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a6/}
}
TY  - JOUR
AU  - M. Kh. Faizrakhmanov
TI  - Turing jumps in the Ershov hierarchy
JO  - Algebra i logika
PY  - 2011
SP  - 399
EP  - 414
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_3_a6/
LA  - ru
ID  - AL_2011_50_3_a6
ER  - 
%0 Journal Article
%A M. Kh. Faizrakhmanov
%T Turing jumps in the Ershov hierarchy
%J Algebra i logika
%D 2011
%P 399-414
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_3_a6/
%G ru
%F AL_2011_50_3_a6
M. Kh. Faizrakhmanov. Turing jumps in the Ershov hierarchy. Algebra i logika, Tome 50 (2011) no. 3, pp. 399-414. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a6/