Turing jumps in the Ershov hierarchy
Algebra i logika, Tome 50 (2011) no. 3, pp. 399-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

We look at infinite levels of the Ershov hierarchy in the natural system of notation, which are proper for jumps of sets. It is proved that proper infinite levels for jumps are confined to $\Delta^{-1}_a$-levels, where $a$ stands for an ordinal $\omega^n>1$.
Keywords: Turing jumps, Ershov hierarchy, constructive ordinals, superlow sets.
@article{AL_2011_50_3_a6,
     author = {M. Kh. Faizrakhmanov},
     title = {Turing jumps in the {Ershov} hierarchy},
     journal = {Algebra i logika},
     pages = {399--414},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a6/}
}
TY  - JOUR
AU  - M. Kh. Faizrakhmanov
TI  - Turing jumps in the Ershov hierarchy
JO  - Algebra i logika
PY  - 2011
SP  - 399
EP  - 414
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_3_a6/
LA  - ru
ID  - AL_2011_50_3_a6
ER  - 
%0 Journal Article
%A M. Kh. Faizrakhmanov
%T Turing jumps in the Ershov hierarchy
%J Algebra i logika
%D 2011
%P 399-414
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_3_a6/
%G ru
%F AL_2011_50_3_a6
M. Kh. Faizrakhmanov. Turing jumps in the Ershov hierarchy. Algebra i logika, Tome 50 (2011) no. 3, pp. 399-414. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a6/

[1] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv, I”, Algebra i logika, 7:1 (1968), 47–73 | MR

[2] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv, II”, Algebra i logika, 7:4 (1968), 15–47 | MR | Zbl

[3] Yu. L. Ershov, “Ob odnoi ierarkhii mnozhestv, III”, Algebra i logika, 9:1 (1970), 34–51 | MR | Zbl

[4] M. M. Arslanov, Ierarkhiya Ershova, Spetskurs dlya studentov mekhmata, Kazanskii gos. un-t, Kazan, 2007

[5] H. G. Carstens, “$\Delta^0_2$-Mengen”, Arch. Math. Logik Grundlagenforsch., 18 (1976), 55–65 | DOI | MR

[6] B. Schaeffer, “Dynamic notions of genericity and array noncomputability”, Ann. Pure Appl. Logic, 95:1–3 (1998), 37–69 | DOI | MR | Zbl

[7] S. Walk, Towards a definition of the array computable degrees, PhD Thesis, Univ. Notre Dame, 1999

[8] I. Sh. Kalimullin, “Some notes on degree spectra of the structures”, Computation and logic in the real world, Third conference on computability in Europe, CiE 2007 (Siena, Italy, June 18–23, 2007), Lect. Notes Comput. Sci., 4497, eds. S. B. Cooper et al., Springer-Verlag, Berlin, 2007, 389–397 | Zbl