A quasivariety lattice of torsion-free soluble groups
Algebra i logika, Tome 50 (2011) no. 3, pp. 368-387.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_q(qG)$ be a lattice of quasivarieties contained in a quasivariety generated by a group $G$. It is proved that if $G$ is a torsion-free finitely generated group in $\mathcal{AB}_{p^k}$, where $p$ is a prime, $p\ne2$, and $k\in\mathbf N$, which is a split extension of an Abelian group by a cyclic group, then the lattice $L_q(qG)$ is a finite chain.
Keywords: quasivariety, quasivariety lattice, metabelian group.
@article{AL_2011_50_3_a4,
     author = {A. L. Polushin},
     title = {A quasivariety lattice of torsion-free soluble groups},
     journal = {Algebra i logika},
     pages = {368--387},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a4/}
}
TY  - JOUR
AU  - A. L. Polushin
TI  - A quasivariety lattice of torsion-free soluble groups
JO  - Algebra i logika
PY  - 2011
SP  - 368
EP  - 387
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_3_a4/
LA  - ru
ID  - AL_2011_50_3_a4
ER  - 
%0 Journal Article
%A A. L. Polushin
%T A quasivariety lattice of torsion-free soluble groups
%J Algebra i logika
%D 2011
%P 368-387
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_3_a4/
%G ru
%F AL_2011_50_3_a4
A. L. Polushin. A quasivariety lattice of torsion-free soluble groups. Algebra i logika, Tome 50 (2011) no. 3, pp. 368-387. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a4/

[1] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl

[2] A. I. Budkin, “O reshëtke kvazimnogoobrazii nilpotentnykh grupp”, Algebra i logika, 33:1 (1994), 25–36 | MR | Zbl

[3] A. N. Fedorov, “Kvazitozhdestva svobodnoi 2-nilpotentnoi gruppy”, Matem. zametki, 40:5 (1986), 590–597 | MR | Zbl

[4] A. I. Budkin, “O nezavisimoi aksiomatiziruemosti kvazimnogoobrazii razreshimykh grupp”, Algebra i logika, 30:2 (1991), 125–153 | MR | Zbl

[5] A. I. Budkin, “O kvazimnogoobraziyakh, soderzhaschikh nilpotentnye gruppy bez krucheniya”, Algebra i logika, 40:6 (2001), 629–650 | MR | Zbl

[6] A. L. Polushin, “O reshëtke kvazimnogoobrazii razreshimykh grupp bez krucheniya”, Maltsevskie chteniya, 2009, tez. dokl., 2009, 73 http://www.math.nsc.ru/conference/malmeet/09/Abstracts/abstracts-09.pdf

[7] A. I. Budkin, “Kvazimnogoobrazie, porozhdënnoe pochti abelevoi gruppoi bez krucheniya”, Algebra i logika, 46:4 (2007), 407–427 | MR | Zbl

[8] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[9] D. Gorenstein, Finite groups, Harper's Series in Modern Mathematics, Harper and Row, Publ., New York a.o., 1968 | MR | Zbl

[10] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[11] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. un-ta, Barnaul, 2002

[12] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[13] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[14] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR

[15] D. K. Fadeev, I. S. Sominskii, Sbornik zadach po vysshei algebre, Nauka, M., 1972