Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2011_50_3_a3, author = {S. A. Drobyshevich}, title = {A hybrid calculus for logic~$N^*$: {Residual} finiteness and decidability}, journal = {Algebra i logika}, pages = {351--367}, publisher = {mathdoc}, volume = {50}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a3/} }
S. A. Drobyshevich. A hybrid calculus for logic~$N^*$: Residual finiteness and decidability. Algebra i logika, Tome 50 (2011) no. 3, pp. 351-367. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a3/
[1] P. Cabalar, S. P. Odintsov, D. Pearce, “Logical foundations of well-founded semantics”, Principles of knowledge representation and reasoning, Proc. 10th Int. Conf. (KR2006), eds. P. Doherty et al., AAAI Press, Menlo Park, California, 2006, 25–36
[2] W. Rautenberg, Klassische und nichtklassische Aussagenlogik, Logik Grundlagen Math., 22, Friedr. Vieweg and Sohn., Braunschweig Wiesbaden, 1979 | MR | Zbl
[3] K. Dosen, “Negation as a modal operator”, Rep. Math. Logic, 20 (1986), 15–28 | MR | Zbl
[4] K. Dosen, “Negation in the light of modal logic”, What is negation?, Appl. Log. Ser., 13, eds. Dov M. Gabbay et al., Kluwer Acad. Publ., Dordrecht, 1999, 77–86 | MR | Zbl
[5] S. P. Odintsov, “Combining intuitionistic connectives and Routley negation”, Sib. Electr. Math. Rep., 7 (2010), 21–41 | MR
[6] R. Routley, V. Routley, “The semantics of first degree entailment”, Nous, 6 (1972), 335–359 | DOI | MR
[7] S. P. Odintsov, H. Wansing, “Inconsistency-tolerant description logic. II. A tableau algorithm for $\mathcal{CALC}^\mathrm C$”, J. Appl. Log., 6:3 (2008), 343–360 | DOI | MR | Zbl
[8] S. A. Drobyshevich, “Filtration for logic $N^*$”, Maltsevskie chteniya, tez. dokl., 2010, 41