A hybrid calculus for logic~$N^*$: Residual finiteness and decidability
Algebra i logika, Tome 50 (2011) no. 3, pp. 351-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that logic $N^*$ is residually finite and decidable. A hybrid calculus for the logic is constructed based on a tabular calculus for intuitionistic logic. It is shown that the hybrid calculus is sound and complete.
Keywords: modal logic, intuitionistic logic, tabular calculus
Mots-clés : hybrid calculus.
@article{AL_2011_50_3_a3,
     author = {S. A. Drobyshevich},
     title = {A hybrid calculus for logic~$N^*$: {Residual} finiteness and decidability},
     journal = {Algebra i logika},
     pages = {351--367},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a3/}
}
TY  - JOUR
AU  - S. A. Drobyshevich
TI  - A hybrid calculus for logic~$N^*$: Residual finiteness and decidability
JO  - Algebra i logika
PY  - 2011
SP  - 351
EP  - 367
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_3_a3/
LA  - ru
ID  - AL_2011_50_3_a3
ER  - 
%0 Journal Article
%A S. A. Drobyshevich
%T A hybrid calculus for logic~$N^*$: Residual finiteness and decidability
%J Algebra i logika
%D 2011
%P 351-367
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_3_a3/
%G ru
%F AL_2011_50_3_a3
S. A. Drobyshevich. A hybrid calculus for logic~$N^*$: Residual finiteness and decidability. Algebra i logika, Tome 50 (2011) no. 3, pp. 351-367. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a3/

[1] P. Cabalar, S. P. Odintsov, D. Pearce, “Logical foundations of well-founded semantics”, Principles of knowledge representation and reasoning, Proc. 10th Int. Conf. (KR2006), eds. P. Doherty et al., AAAI Press, Menlo Park, California, 2006, 25–36

[2] W. Rautenberg, Klassische und nichtklassische Aussagenlogik, Logik Grundlagen Math., 22, Friedr. Vieweg and Sohn., Braunschweig Wiesbaden, 1979 | MR | Zbl

[3] K. Dosen, “Negation as a modal operator”, Rep. Math. Logic, 20 (1986), 15–28 | MR | Zbl

[4] K. Dosen, “Negation in the light of modal logic”, What is negation?, Appl. Log. Ser., 13, eds. Dov M. Gabbay et al., Kluwer Acad. Publ., Dordrecht, 1999, 77–86 | MR | Zbl

[5] S. P. Odintsov, “Combining intuitionistic connectives and Routley negation”, Sib. Electr. Math. Rep., 7 (2010), 21–41 | MR

[6] R. Routley, V. Routley, “The semantics of first degree entailment”, Nous, 6 (1972), 335–359 | DOI | MR

[7] S. P. Odintsov, H. Wansing, “Inconsistency-tolerant description logic. II. A tableau algorithm for $\mathcal{CALC}^\mathrm C$”, J. Appl. Log., 6:3 (2008), 343–360 | DOI | MR | Zbl

[8] S. A. Drobyshevich, “Filtration for logic $N^*$”, Maltsevskie chteniya, tez. dokl., 2010, 41