Finite Alperin 2-groups with cyclic second commutants
Algebra i logika, Tome 50 (2011) no. 3, pp. 326-350
Cet article a éte moissonné depuis la source Math-Net.Ru
An Alperin group is a group in which every 2-generated subgroup has a cyclic commutant. Previously, we constructed examples of finite Alperin 2-groups with second commutant isomorphic to $Z_2$ or $Z_4$. Here, it is proved that for any natural $n$, there exists a finite Alperin 2-group whose second commutant is isomorphic to $Z_{2^n}$.
Mots-clés :
2-group, commutant
Keywords: Alperin group, representation of groups in terms of generators and defining relations.
Keywords: Alperin group, representation of groups in terms of generators and defining relations.
@article{AL_2011_50_3_a2,
author = {B. M. Veretennikov},
title = {Finite {Alperin} 2-groups with cyclic second commutants},
journal = {Algebra i logika},
pages = {326--350},
year = {2011},
volume = {50},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a2/}
}
B. M. Veretennikov. Finite Alperin 2-groups with cyclic second commutants. Algebra i logika, Tome 50 (2011) no. 3, pp. 326-350. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a2/
[1] J. L. Alperin, “On a special class of regular $p$-groups”, Trans. Am. Math. Soc., 106 (1963), 77–99 | MR | Zbl
[2] B. M. Veretennikov, “Ob odnoi gipoteze Alperina”, Sib. matem. zh., 21:1 (1980), 200–202 | MR | Zbl
[3] B. M. Veretennikov, “O konechnykh 3-porozhdënnykh 2-gruppakh Alperina”, Sib. elektr. matem. izv., 4 (2007), 155–168 | MR | Zbl
[4] M. Kholl, Teoriya grupp, IL, M., 1962
[5] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl