Finite Alperin 2-groups with cyclic second commutants
Algebra i logika, Tome 50 (2011) no. 3, pp. 326-350.

Voir la notice de l'article provenant de la source Math-Net.Ru

An Alperin group is a group in which every 2-generated subgroup has a cyclic commutant. Previously, we constructed examples of finite Alperin 2-groups with second commutant isomorphic to $Z_2$ or $Z_4$. Here, it is proved that for any natural $n$, there exists a finite Alperin 2-group whose second commutant is isomorphic to $Z_{2^n}$.
Mots-clés : 2-group, commutant
Keywords: Alperin group, representation of groups in terms of generators and defining relations.
@article{AL_2011_50_3_a2,
     author = {B. M. Veretennikov},
     title = {Finite {Alperin} 2-groups with cyclic second commutants},
     journal = {Algebra i logika},
     pages = {326--350},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a2/}
}
TY  - JOUR
AU  - B. M. Veretennikov
TI  - Finite Alperin 2-groups with cyclic second commutants
JO  - Algebra i logika
PY  - 2011
SP  - 326
EP  - 350
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_3_a2/
LA  - ru
ID  - AL_2011_50_3_a2
ER  - 
%0 Journal Article
%A B. M. Veretennikov
%T Finite Alperin 2-groups with cyclic second commutants
%J Algebra i logika
%D 2011
%P 326-350
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_3_a2/
%G ru
%F AL_2011_50_3_a2
B. M. Veretennikov. Finite Alperin 2-groups with cyclic second commutants. Algebra i logika, Tome 50 (2011) no. 3, pp. 326-350. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a2/

[1] J. L. Alperin, “On a special class of regular $p$-groups”, Trans. Am. Math. Soc., 106 (1963), 77–99 | MR | Zbl

[2] B. M. Veretennikov, “Ob odnoi gipoteze Alperina”, Sib. matem. zh., 21:1 (1980), 200–202 | MR | Zbl

[3] B. M. Veretennikov, “O konechnykh 3-porozhdënnykh 2-gruppakh Alperina”, Sib. elektr. matem. izv., 4 (2007), 155–168 | MR | Zbl

[4] M. Kholl, Teoriya grupp, IL, M., 1962

[5] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl