$o$-stable theories
Algebra i logika, Tome 50 (2011) no. 3, pp. 303-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

A well-developed technique created to study stable theories (M. Morley, S. Shelah) is applied in dealing with a class of theories with definable linear order. We introduce the notion of an $o$-stable theory, which generalizes the concepts of $o$-minimality, of weak $o$-minimality, and of quasi-$o$-minimality. It is proved that $o$-stable theories are dependent, but they do not exhaust the class of dependent theories with definable linear order, and that every linear order is $o$-superstable.
Keywords: $o$-stable theory, dependent theory, convex complete 1-type.
@article{AL_2011_50_3_a1,
     author = {B. S. Baizhanov and V. V. Verbovskii},
     title = {$o$-stable theories},
     journal = {Algebra i logika},
     pages = {303--325},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_3_a1/}
}
TY  - JOUR
AU  - B. S. Baizhanov
AU  - V. V. Verbovskii
TI  - $o$-stable theories
JO  - Algebra i logika
PY  - 2011
SP  - 303
EP  - 325
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_3_a1/
LA  - ru
ID  - AL_2011_50_3_a1
ER  - 
%0 Journal Article
%A B. S. Baizhanov
%A V. V. Verbovskii
%T $o$-stable theories
%J Algebra i logika
%D 2011
%P 303-325
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_3_a1/
%G ru
%F AL_2011_50_3_a1
B. S. Baizhanov; V. V. Verbovskii. $o$-stable theories. Algebra i logika, Tome 50 (2011) no. 3, pp. 303-325. http://geodesic.mathdoc.fr/item/AL_2011_50_3_a1/

[1] M. D. Morley, “Categoricity in power”, Trans. Am. Math. Soc., 114:2 (1965), 514–538 | DOI | MR | Zbl

[2] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, North-Holland, Amsterdam a.o., 1978 | MR | Zbl

[3] A. Pillay, Ch. Steinhorn, “Definable sets in ordered structures, I”, Trans. Am. Math. Soc., 295:2 (1986), 565–592 | DOI | MR | Zbl

[4] B. Sh. Kulpeshov, “Weakly $o$-minimal structures and some of their properties”, J. Symb. Log., 63:4 (1998), 1511–1528 | DOI | MR | Zbl

[5] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[6] T. G. Mustafin, “Novye ponyatiya stabilnosti teorii”, Trudy sovetsko-frantsuzskogo kollokviuma po teorii modelei, Karaganda, 1990, 112–125 | MR | Zbl

[7] Dzh. Saks, Teoriya nasyschennykh modelei, Mir, M., 1976 | MR

[8] B. S. Baizhanov, “Expansion of a model of a weakly o-minimal theory by a family of unary predicates”, J. Symb. Log., 66:3 (2001), 1382–1414 | DOI | MR | Zbl

[9] B. S. Baizhanov, “Opredelimost 1-tipov v slabo $o$-minimalnykh teoriyakh”, Matem. tr., 8:2 (2005), 3–38 | MR

[10] D. Macpherson, D. Marker, Ch. Steinhorn, “Weakly $o$-minimal structures and real closed fields”, Trans. Am. Math. Soc., 352:12 (2000), 5435–5483 | DOI | MR | Zbl

[11] B. Poizat, Cours de théorie des modèles. Une introduction à la logique mathématique contemporaine, Nur Al-Mantiq Wal-Ma'rifah, Bruno Poizat, Villeurbanne, France, 1985 | Zbl

[12] O. Belegradek, Ya. Peterzil, F. Wagner, “Quasi-$o$-minimal structures”, J. Symb. Log., 65:3 (2000), 1115–1132 | DOI | MR | Zbl

[13] O. Belegradek, V. Verbovskiy, F. O. Wagner, “Coset-minimal groups”, Ann. Pure Appl. Logic, 121:2–3 (2003), 113–143 | DOI | MR | Zbl

[14] V. V. Verbovskii, “Ob eliminatsii kvantorov dlya $(R,,+,0,H)$ c vydelennoi plotnoi podgruppoi”, Matem. zh. (In-t matem. MON RK), 5:2 (2006), 56–59 | MR

[15] M. Rubin, “Theories of linear order”, Isr. J. Math., 17 (1974), 392–443 | DOI | MR | Zbl