Generalized stability of torsion-free Abelian groups
Algebra i logika, Tome 50 (2011) no. 2, pp. 231-245
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that there exists an Abelian group that is not $(P,a)$-stable.
Keywords:
$(P,a)$-stable theory, Abelian group.
@article{AL_2011_50_2_a4,
author = {M. A. Rusaleev},
title = {Generalized stability of torsion-free {Abelian} groups},
journal = {Algebra i logika},
pages = {231--245},
year = {2011},
volume = {50},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2011_50_2_a4/}
}
M. A. Rusaleev. Generalized stability of torsion-free Abelian groups. Algebra i logika, Tome 50 (2011) no. 2, pp. 231-245. http://geodesic.mathdoc.fr/item/AL_2011_50_2_a4/
[1] S. Shelah, “Stable theories”, Isr. J. Math., 7:3 (1969), 187–202 | DOI | Zbl
[2] M. D. Morley, “Categoricity in power”, Trans. Am. Math. Soc., 114:2 (1965), 514–538 | DOI | MR | Zbl
[3] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, North-Holland Publ. Co., Amsterdam a.o., 1978 | Zbl
[4] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl
[5] T. Nurmagambetov, B. Puaza, “O chisle elementarnykh par nad mnozhestvami”, Trudy frantsuzsko-kazakhstanskogo kollokviuma po teorii modelei, Alma-Ata, 1995, 73–82
[6] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 4-e izd., Lan, SPb., 2005