Generalized stability of torsion-free Abelian groups
Algebra i logika, Tome 50 (2011) no. 2, pp. 231-245.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that there exists an Abelian group that is not $(P,a)$-stable.
Keywords: $(P,a)$-stable theory, Abelian group.
@article{AL_2011_50_2_a4,
     author = {M. A. Rusaleev},
     title = {Generalized stability of torsion-free {Abelian} groups},
     journal = {Algebra i logika},
     pages = {231--245},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_2_a4/}
}
TY  - JOUR
AU  - M. A. Rusaleev
TI  - Generalized stability of torsion-free Abelian groups
JO  - Algebra i logika
PY  - 2011
SP  - 231
EP  - 245
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_2_a4/
LA  - ru
ID  - AL_2011_50_2_a4
ER  - 
%0 Journal Article
%A M. A. Rusaleev
%T Generalized stability of torsion-free Abelian groups
%J Algebra i logika
%D 2011
%P 231-245
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_2_a4/
%G ru
%F AL_2011_50_2_a4
M. A. Rusaleev. Generalized stability of torsion-free Abelian groups. Algebra i logika, Tome 50 (2011) no. 2, pp. 231-245. http://geodesic.mathdoc.fr/item/AL_2011_50_2_a4/

[1] S. Shelah, “Stable theories”, Isr. J. Math., 7:3 (1969), 187–202 | DOI | Zbl

[2] M. D. Morley, “Categoricity in power”, Trans. Am. Math. Soc., 114:2 (1965), 514–538 | DOI | MR | Zbl

[3] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, North-Holland Publ. Co., Amsterdam a.o., 1978 | Zbl

[4] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[5] T. Nurmagambetov, B. Puaza, “O chisle elementarnykh par nad mnozhestvami”, Trudy frantsuzsko-kazakhstanskogo kollokviuma po teorii modelei, Alma-Ata, 1995, 73–82

[6] Yu. L. Ershov, E. A. Palyutin, Matematicheskaya logika, 4-e izd., Lan, SPb., 2005