Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle
Algebra i logika, Tome 50 (2011) no. 2, pp. 189-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a classification of maximal subgroups of odd index in finite groups whose socle is isomorphic to one of the groups $PSL_n(q)$, $PSU_n(q)$, or $PSp_n(q)$ for $n\ge13$.
Keywords: finite group, almost simple group, classical group, maximal subgroup, odd index.
Mots-clés : socle
@article{AL_2011_50_2_a2,
     author = {N. V. Maslova},
     title = {Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle},
     journal = {Algebra i logika},
     pages = {189--208},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_2_a2/}
}
TY  - JOUR
AU  - N. V. Maslova
TI  - Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle
JO  - Algebra i logika
PY  - 2011
SP  - 189
EP  - 208
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_2_a2/
LA  - ru
ID  - AL_2011_50_2_a2
ER  - 
%0 Journal Article
%A N. V. Maslova
%T Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle
%J Algebra i logika
%D 2011
%P 189-208
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_2_a2/
%G ru
%F AL_2011_50_2_a2
N. V. Maslova. Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle. Algebra i logika, Tome 50 (2011) no. 2, pp. 189-208. http://geodesic.mathdoc.fr/item/AL_2011_50_2_a2/

[1] M. W. Liebeck, J. Saxl, “The primitive permutation groups of odd degree”, J. Lond. Math. Soc., II Ser., 31:2 (1985), 250–264 | DOI | MR | Zbl

[2] W. M. Kantor, “Primitive permutation groups of odd degree, and an application to finite projective planes”, J. Algebra, 106:1 (1987), 15–45 | DOI | MR | Zbl

[3] N. V. Maslova, “Klassifikatsiya maksimalnykh podgrupp nechëtnogo indeksa v konechnykh prostykh klassicheskikh gruppakh”, Tr. In-ta matem. mekh. UrO RAN, 14, no. 4, 2008, 100–118

[4] P. Kleidman, M. Liebeck, The subgroup structure of the finite classical groups, London Math. Soc. Lect. Note Series, 129, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | Zbl

[6] R. W. Carter, Simple groups of Lie type, Pure and Appl. Math., 28, J. Wiley Sons, London a.o., 1972