Decidability of the weak interpolation property over the minimal logic
Algebra i logika, Tome 50 (2011) no. 2, pp. 152-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of extensions for Johansson's minimal logic $\mathrm J$ with the weak interpolation property. This property is proved to be decidable over $\mathrm J$.
Keywords: Johansson's minimal logic, extension of logic, weak interpolation property, decidability.
@article{AL_2011_50_2_a1,
     author = {L. L. Maksimova},
     title = {Decidability of the weak interpolation property over the minimal logic},
     journal = {Algebra i logika},
     pages = {152--188},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_2_a1/}
}
TY  - JOUR
AU  - L. L. Maksimova
TI  - Decidability of the weak interpolation property over the minimal logic
JO  - Algebra i logika
PY  - 2011
SP  - 152
EP  - 188
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_2_a1/
LA  - ru
ID  - AL_2011_50_2_a1
ER  - 
%0 Journal Article
%A L. L. Maksimova
%T Decidability of the weak interpolation property over the minimal logic
%J Algebra i logika
%D 2011
%P 152-188
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_2_a1/
%G ru
%F AL_2011_50_2_a1
L. L. Maksimova. Decidability of the weak interpolation property over the minimal logic. Algebra i logika, Tome 50 (2011) no. 2, pp. 152-188. http://geodesic.mathdoc.fr/item/AL_2011_50_2_a1/

[1] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR

[2] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[3] J. Barwise, S. Feferman (eds.), Model-theoretic logics, Perspect. Math. Log., Springer-Verlag, New York etc., 1985 | Zbl

[4] D. M. Gabbay, L. Maksimova, Interpolation and definability. Modal and intuitionistic logics, Oxford Logic Guides, 46, Oxford Sci. Publ., Clarendon Press, Oxford, 2005 | MR | Zbl

[5] K. Schütte, “Der Interpolationssatz der intuitionistischen Prädikatenlogik”, Math. Ann., 148 (1962), 192–200 | DOI | MR

[6] D. M. Gabbay, Semantical investigations in Heyting's intuitionistic logic, Synthese Library, 148, D. Reidel Publ. Co., Dordrecht–Boston–London, 1981 | MR | Zbl

[7] L. Maksimova, “Interpolation and joint consistency”, We will show them!, Essays in honour of Dov Gabbay, v. 2, eds. S. Artemov et al., King's College Publ., London, 2005, 293–305

[8] L. L. Maksimova, “Sovmestnaya neprotivorechivost v rasshireniyakh minimalnoi logiki”, Sib. matem. zh., 51:3 (2010), 604–619 | MR | Zbl

[9] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[10] A. Robinson, “A result on consistency and its application to the theory of definition”, Nederl. Akad. Wet., Proc., Ser. A, 59 (1956), 47–58 | Zbl

[11] L. L. Maksimova, “Neyavnaya opredelimost i pozitivnye logiki”, Algebra i logika, 42:1 (2003), 65–93 | MR | Zbl

[12] L. L. Maksimova, “Interpolyatsiya i opredelimost v rasshireniyakh minimalnoi logiki”, Algebra i logika, 44:6 (2005), 726–750 | MR | Zbl

[13] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | DOI | MR

[14] M. V. Stukacheva, “O diz'yunktivnom svoistve v klasse paraneprotivorechivykh rasshirenii minimalnoi logiki”, Algebra i logika, 43:2 (2004), 235–252 | MR | Zbl

[15] L. L. Maksimova, “Metod dokazatelstva interpolyatsii v paraneprotivorechivykh rasshireniyakh minimalnoi logiki”, Algebra i logika, 46:5 (2007), 627–648 | MR | Zbl

[16] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963; E. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972

[17] L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Logic, 105:1–3 (2000), 83–102 | DOI | MR | Zbl

[18] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970

[19] J. C. C. McKinsey, A. Tarski, “Some theorems about the sequential calculi of Lewis and Heyting”, J. Symb. Log., 13:1 (1948), 1–15 | DOI | MR | Zbl

[20] L. L. Maksimova, “Slabaya forma interpolyatsii v ekvatsionalnoi logike”, Algebra i logika, 47:1 (2008), 94–107 | MR | Zbl

[21] S. Odintsov, “Logic of classical refutability and class of extensions of minimal logic”, Log. Log. Philos., 9 (2001), 91–107 | MR | Zbl

[22] L. L. Maksimova, “Proektivnoe svoistvo Beta i interpolyatsiya v pozitivnykh i blizkikh k nim logikakh”, Algebra i logika, 45:1 (2006), 85–113 | MR | Zbl

[23] V. A. Yankov, “O svyazi mezhdu vyvodimostyu v intuitsionistskom ischislenii vyskazyvanii i konechnymi implikativnymi strukturami”, Dokl. AN SSSR, 151:6 (1963), 1293–1294 | Zbl

[24] L. L. Maksimova, “Razreshimost problemy interpolyatsii i rodstvennykh svoistv v tablichnykh logikakh”, Algebra i logika, 48:6 (2009), 754–792 | MR