Levi quasivarieties of exponent $p^s$
Algebra i logika, Tome 50 (2011) no. 1, pp. 26-41

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary class $M$ of groups, $L(M)$ denotes a class of all groups $G$ the normal closure of any element in which belongs to $M$; $qM$ is a quasivariety generated by $M$. Fix a prime $p$, $p\ne2$, and a natural number $s$, $s\ge2$. Let $qF$ be a quasivariety generated by a relatively free group in a class of nilpotent groups of class at most 2 and exponent $p^s$, with commutator subgroups of exponent $p$. We give a description of a Levi class generated by $qF$. Fix a natural number $n$, $n\ge2$. Let $K$ be an arbitrary class of nilpotent groups of class at most $2$ and exponent $2^n$, with commutator subgroups of exponent $2$. Assume also that for all groups in $K$, elements of order $2^m$, $0$, are contained in the center of a given group. It is proved that a Levi class generated by a quasivariety $qK$ coincides with a variety of nilpotent groups of class at most $2$ and exponent $2^n$, with commutator subgroups of exponent $2$.
Keywords: quasivariety, Levi classes, nilpotent groups.
@article{AL_2011_50_1_a1,
     author = {V. V. Lodeishchikova},
     title = {Levi quasivarieties of exponent~$p^s$},
     journal = {Algebra i logika},
     pages = {26--41},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_1_a1/}
}
TY  - JOUR
AU  - V. V. Lodeishchikova
TI  - Levi quasivarieties of exponent $p^s$
JO  - Algebra i logika
PY  - 2011
SP  - 26
EP  - 41
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_1_a1/
LA  - ru
ID  - AL_2011_50_1_a1
ER  - 
%0 Journal Article
%A V. V. Lodeishchikova
%T Levi quasivarieties of exponent $p^s$
%J Algebra i logika
%D 2011
%P 26-41
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_1_a1/
%G ru
%F AL_2011_50_1_a1
V. V. Lodeishchikova. Levi quasivarieties of exponent $p^s$. Algebra i logika, Tome 50 (2011) no. 1, pp. 26-41. http://geodesic.mathdoc.fr/item/AL_2011_50_1_a1/