Levi quasivarieties of exponent~$p^s$
Algebra i logika, Tome 50 (2011) no. 1, pp. 26-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary class $M$ of groups, $L(M)$ denotes a class of all groups $G$ the normal closure of any element in which belongs to $M$; $qM$ is a quasivariety generated by $M$. Fix a prime $p$, $p\ne2$, and a natural number $s$, $s\ge2$. Let $qF$ be a quasivariety generated by a relatively free group in a class of nilpotent groups of class at most 2 and exponent $p^s$, with commutator subgroups of exponent $p$. We give a description of a Levi class generated by $qF$. Fix a natural number $n$, $n\ge2$. Let $K$ be an arbitrary class of nilpotent groups of class at most $2$ and exponent $2^n$, with commutator subgroups of exponent $2$. Assume also that for all groups in $K$, elements of order $2^m$, $0$, are contained in the center of a given group. It is proved that a Levi class generated by a quasivariety $qK$ coincides with a variety of nilpotent groups of class at most $2$ and exponent $2^n$, with commutator subgroups of exponent $2$.
Keywords: quasivariety, Levi classes, nilpotent groups.
@article{AL_2011_50_1_a1,
     author = {V. V. Lodeishchikova},
     title = {Levi quasivarieties of exponent~$p^s$},
     journal = {Algebra i logika},
     pages = {26--41},
     publisher = {mathdoc},
     volume = {50},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2011_50_1_a1/}
}
TY  - JOUR
AU  - V. V. Lodeishchikova
TI  - Levi quasivarieties of exponent~$p^s$
JO  - Algebra i logika
PY  - 2011
SP  - 26
EP  - 41
VL  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2011_50_1_a1/
LA  - ru
ID  - AL_2011_50_1_a1
ER  - 
%0 Journal Article
%A V. V. Lodeishchikova
%T Levi quasivarieties of exponent~$p^s$
%J Algebra i logika
%D 2011
%P 26-41
%V 50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2011_50_1_a1/
%G ru
%F AL_2011_50_1_a1
V. V. Lodeishchikova. Levi quasivarieties of exponent~$p^s$. Algebra i logika, Tome 50 (2011) no. 1, pp. 26-41. http://geodesic.mathdoc.fr/item/AL_2011_50_1_a1/

[1] L. C. Kappe, “On Levi-formations”, Arch. Math., 23:6 (1972), 561–572 | DOI | MR | Zbl

[2] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions”, J. Indian Math. Soc. (New Ser.), 6 (1942), 87–97 | MR | Zbl

[3] R. F. Morse, “Levi-properties generated by varieties”, The mathematical legacy of Wilhelm Magnus. Groups, geometry and special functions, Conf. on the legacy of Wilhelm Magnus (May 1–3, 1992, Polytechnic Univ. Brooklyn, NY, USA), Contemp. Math., 169, eds. W. Abikoff et al., Am. Math. Soc., Providence, RI, 1994, 467–474 | MR | Zbl

[4] A. I. Budkin, “Kvazimnogoobraziya Levi”, Sib. matem. zh., 40:2 (1999), 266–270 | MR | Zbl

[5] A. I. Budkin, “O klassakh Levi, porozhdënnykh nilpotentnymi gruppami”, Algebra i logika, 39:6 (2000), 635–647 | MR | Zbl

[6] L. C. Kappe, W. P. Kappe, “On three-Engel groups”, Bull. Aust. Math. Soc., 7:3 (1972), 391–405 | DOI | MR | Zbl

[7] A. I. Budkin, L. V. Taranina, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Sib. matem. zh., 41:2 (2000), 270–277 | MR | Zbl

[8] V. V. Lodeischikova, “O kvazimnogoobraziyakh Levi, porozhdennykh nilpotentnymi gruppami”, Izv. Alt. gos. un-ta, 2009, no. 1(61), 26–29

[9] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[10] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. un-ta, Barnaul, 2002

[11] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl

[12] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[13] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR

[14] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[15] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[16] A. N. Fedorov, Kvazitozhdestva konechnykh 2-nilpotentnykh grupp, dep. v VINITI No 5489-V87, 1987