Coproducts of rigid groups
Algebra i logika, Tome 49 (2010) no. 6, pp. 803-818.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varepsilon=(\varepsilon_1,\dots,\varepsilon_m)$ be a tuple consisting of zeros and ones. Suppose that a group $G$ has a normal series of the form $$ G=G_1\ge G_2\ge\dots\ge G_m\ge G_{m+1}=1, $$ in which $G_i>G_{i+1}$ for $\varepsilon_i=1$, $G_i=G_{i+1}$ for $\varepsilon_i=0$, and all factors $G_i/G_{i+1}$ of the series are Abelian and are torsion free as right $\mathbb Z[G/G_i]$-modules. Such a series, if it exists, is defined by the group $G$ and by the tuple $\varepsilon$ uniquely. We call $G$ with the specified series a rigid $m$-graded group with grading $\varepsilon$. In a free solvable group of derived length $m$, the above-formulated condition is satisfied by a series of derived subgroups. We define the concept of a morphism of rigid $m$-graded groups. It is proved that the category of rigid $m$-graded groups contains coproducts, and we show how to construct a coproduct $G\circ H$ of two given rigid $m$-graded groups. Also it is stated that if $G$ is a rigid $m$-graded group with grading $(1,1,\dots,1)$, and $F$ is a free solvable group of derived length $m$ with basis $\{x_1,\dots,x_n\}$, then $G\circ F$ is the coordinate group of an affine space $G^n$ in variables $x_1,\dots,x_n$ and this space is irreducible in the Zariski topology.
Keywords: rigid $m$-graded group, coordinate group of affine space, Zariski topology.
Mots-clés : coproduct
@article{AL_2010_49_6_a5,
     author = {N. S. Romanovskii},
     title = {Coproducts of rigid groups},
     journal = {Algebra i logika},
     pages = {803--818},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a5/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Coproducts of rigid groups
JO  - Algebra i logika
PY  - 2010
SP  - 803
EP  - 818
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_6_a5/
LA  - ru
ID  - AL_2010_49_6_a5
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Coproducts of rigid groups
%J Algebra i logika
%D 2010
%P 803-818
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_6_a5/
%G ru
%F AL_2010_49_6_a5
N. S. Romanovskii. Coproducts of rigid groups. Algebra i logika, Tome 49 (2010) no. 6, pp. 803-818. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a5/

[1] A. Myasnikov, N. Romanovskiy, “Krull dimension of solvable groups”, J. Algebra, 324:10 (2010), 2814–2831 | DOI | MR | Zbl

[2] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279 | MR

[3] Ch. K. Gupta, N. S. Romanovskii, “Nëterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl

[4] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR

[5] N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva nad delimymi raspavshimisya zhëstkimi gruppami”, Algebra i logika, 48:6 (2009), 793–818 | MR

[6] V. N. Remeslennikov, N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva v metabelevoi gruppe”, Algebra i logika, 44:5 (2005), 601–621 | MR | Zbl

[7] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem on soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | MR | Zbl

[8] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl

[9] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[10] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[11] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II: Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl