Coproducts of rigid groups
Algebra i logika, Tome 49 (2010) no. 6, pp. 803-818

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varepsilon=(\varepsilon_1,\dots,\varepsilon_m)$ be a tuple consisting of zeros and ones. Suppose that a group $G$ has a normal series of the form $$ G=G_1\ge G_2\ge\dots\ge G_m\ge G_{m+1}=1, $$ in which $G_i>G_{i+1}$ for $\varepsilon_i=1$, $G_i=G_{i+1}$ for $\varepsilon_i=0$, and all factors $G_i/G_{i+1}$ of the series are Abelian and are torsion free as right $\mathbb Z[G/G_i]$-modules. Such a series, if it exists, is defined by the group $G$ and by the tuple $\varepsilon$ uniquely. We call $G$ with the specified series a rigid $m$-graded group with grading $\varepsilon$. In a free solvable group of derived length $m$, the above-formulated condition is satisfied by a series of derived subgroups. We define the concept of a morphism of rigid $m$-graded groups. It is proved that the category of rigid $m$-graded groups contains coproducts, and we show how to construct a coproduct $G\circ H$ of two given rigid $m$-graded groups. Also it is stated that if $G$ is a rigid $m$-graded group with grading $(1,1,\dots,1)$, and $F$ is a free solvable group of derived length $m$ with basis $\{x_1,\dots,x_n\}$, then $G\circ F$ is the coordinate group of an affine space $G^n$ in variables $x_1,\dots,x_n$ and this space is irreducible in the Zariski topology.
Keywords: rigid $m$-graded group, coordinate group of affine space, Zariski topology.
Mots-clés : coproduct
@article{AL_2010_49_6_a5,
     author = {N. S. Romanovskii},
     title = {Coproducts of rigid groups},
     journal = {Algebra i logika},
     pages = {803--818},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a5/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Coproducts of rigid groups
JO  - Algebra i logika
PY  - 2010
SP  - 803
EP  - 818
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_6_a5/
LA  - ru
ID  - AL_2010_49_6_a5
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Coproducts of rigid groups
%J Algebra i logika
%D 2010
%P 803-818
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_6_a5/
%G ru
%F AL_2010_49_6_a5
N. S. Romanovskii. Coproducts of rigid groups. Algebra i logika, Tome 49 (2010) no. 6, pp. 803-818. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a5/