Groups of exponent~24
Algebra i logika, Tome 49 (2010) no. 6, pp. 766-781.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every group of exponent 24 containing an element of order 3 but not containing an element of order 6 is locally finite.
Keywords: groups of exponent 24, local finiteness, element order.
@article{AL_2010_49_6_a3,
     author = {V. D. Mazurov},
     title = {Groups of exponent~24},
     journal = {Algebra i logika},
     pages = {766--781},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a3/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - Groups of exponent~24
JO  - Algebra i logika
PY  - 2010
SP  - 766
EP  - 781
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_6_a3/
LA  - ru
ID  - AL_2010_49_6_a3
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T Groups of exponent~24
%J Algebra i logika
%D 2010
%P 766-781
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_6_a3/
%G ru
%F AL_2010_49_6_a3
V. D. Mazurov. Groups of exponent~24. Algebra i logika, Tome 49 (2010) no. 6, pp. 766-781. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a3/

[1] F. Levi, B. L. van der Waerden, “Über eine besondere Klasse von Gruppen”, Abh. Math. Semin. Hamb. Univ., 9:2 (1932), 154–158 | Zbl

[2] F. W. Levi, “Groups in which the commutator operation satisfies certain algebraic conditions”, J. Indian Math. Soc. New Ser., 6 (1942), 87–97 | MR | Zbl

[3] B. H. Neumann, “Groups whose elements have bounded orders”, J. Lond. Math. Soc., 12 (1937), 195–198 | DOI | Zbl

[4] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. zap. Leningr. gos. un-ta. Ser. matem., 10 (1940), 166–170 | MR | Zbl

[5] D. V. Lytkina, “Stroenie gruppy, poryadki elementov kotoroi ne prevoskhodyat chisla 4”, Sib. matem. zh., 48:2 (2007), 353–358 | MR | Zbl

[6] B. H. Neumann, “Groups with automorphisms that leave only the neutral element fixed”, Arch. Math., 7:1 (1956), 1–5 | DOI | MR | Zbl

[7] M. Schönert, et al., Groups, algorithms and programming, Lehrstuhl D für Mathematik, RWTH, Aachen, 1993

[8] D. Sonkin, On groups of large exponents $n$ and $n$-periodic products, PhD Thesis, Vanderbilt Univ., Nashville, Tennessee, 2005 | MR