Groups of exponent 24
Algebra i logika, Tome 49 (2010) no. 6, pp. 766-781

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every group of exponent 24 containing an element of order 3 but not containing an element of order 6 is locally finite.
Keywords: groups of exponent 24, local finiteness, element order.
@article{AL_2010_49_6_a3,
     author = {V. D. Mazurov},
     title = {Groups of exponent~24},
     journal = {Algebra i logika},
     pages = {766--781},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_6_a3/}
}
TY  - JOUR
AU  - V. D. Mazurov
TI  - Groups of exponent 24
JO  - Algebra i logika
PY  - 2010
SP  - 766
EP  - 781
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_6_a3/
LA  - ru
ID  - AL_2010_49_6_a3
ER  - 
%0 Journal Article
%A V. D. Mazurov
%T Groups of exponent 24
%J Algebra i logika
%D 2010
%P 766-781
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_6_a3/
%G ru
%F AL_2010_49_6_a3
V. D. Mazurov. Groups of exponent 24. Algebra i logika, Tome 49 (2010) no. 6, pp. 766-781. http://geodesic.mathdoc.fr/item/AL_2010_49_6_a3/