Equations and algebraic geometry over profinite groups
Algebra i logika, Tome 49 (2010) no. 5, pp. 654-669.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of an equation over a profinite group is defined, as well as the concepts of an algebraic set and of a coordinate group. We show how to represent the coordinate group as a projective limit of coordinate groups of finite groups. It is proved that if the set $\pi(G)$ of prime divisors of the profinite period of a group $G$ is infinite, then such a group is not Noetherian, even with respect to one-variable equations. For the case of Abelian groups, the finiteness of a set $\pi(G)$ gives rise to equational Noetherianness. The concept of a standard linear pro-$p$-group is introduced, and we prove that such is always equationally Noetherian. As a consequence, it is stated that free nilpotent pro-$p$-groups and free metabelian pro-$p$-groups are equationally Noetherian. In addition, two examples of equationally non-Noetherian pro-$p$-groups are constructed. The concepts of a universal formula and of a universal theory over a profinite group are defined. For equationally Noetherian profinite groups, coordinate groups of irreducible algebraic sets are described using the language of universal theories and the notion of discriminability.
Keywords: profinite group, equationally Noetherian group, universal theory over profinite group.
Mots-clés : equation
@article{AL_2010_49_5_a4,
     author = {S. G. Melesheva},
     title = {Equations and algebraic geometry over profinite groups},
     journal = {Algebra i logika},
     pages = {654--669},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_5_a4/}
}
TY  - JOUR
AU  - S. G. Melesheva
TI  - Equations and algebraic geometry over profinite groups
JO  - Algebra i logika
PY  - 2010
SP  - 654
EP  - 669
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_5_a4/
LA  - ru
ID  - AL_2010_49_5_a4
ER  - 
%0 Journal Article
%A S. G. Melesheva
%T Equations and algebraic geometry over profinite groups
%J Algebra i logika
%D 2010
%P 654-669
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_5_a4/
%G ru
%F AL_2010_49_5_a4
S. G. Melesheva. Equations and algebraic geometry over profinite groups. Algebra i logika, Tome 49 (2010) no. 5, pp. 654-669. http://geodesic.mathdoc.fr/item/AL_2010_49_5_a4/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[2] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[3] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl

[4] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups”, J. Algebra, 200:2 (1998), 517–570 | DOI | MR | Zbl

[5] O. Kharlampovich, A. Myasnikov, “Algebraic geometry over free groups: Lifting solutions into generic points”, Groups, languages, algorithms, Proc. AMS-ASL joint special session on interactions between logic, group theory, and computer science (Baltimore, MD, USA, January 16–19, 2003), Contemp. Math., 378, ed. A. V. Borovik, Am. Math. Soc., Providence, RI, 2005, 213–318 | MR | Zbl

[6] O. Kharlampovich, A. Myasnikov, “Elementary theory of free non-abelian groups”, J. Algebra, 302:2 (2006), 451–552 | DOI | MR | Zbl

[7] Z. Sela, “Diophantine geometry over groups. I. Makanin-Razborov diagrams”, Publ. Math. Inst. Hautes Etud. Sci., 93 (2001), 31–105 | MR | Zbl

[8] Z. Sela, “Diophantine geometry over groups. VI. The elementary theory of a free group”, Geom. Funct. Anal., 16:3 (2006), 707–730 | MR | Zbl

[9] L. Ribes, P. Zalesskii, Profinite groups, Ergebn. Math. Grenzg. 3, 40, Springer-Verlag, Berlin, 2000 | MR | Zbl

[10] J. S. Wilson, Profinite groups, Lond. Math. Soc. Monogr. New Ser., 19, Clarendon Press, Oxford, 1998

[11] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR

[12] V. N. Remeslennikov, “Teoremy vlozheniya dlya prokonechnykh grupp”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 399–417 | MR | Zbl

[13] N. S. Romanovskii, “O vlozheniyakh Shmelkina dlya abstraktnykh i prokonechnykh grupp”, Algebra i logika, 38:5 (1999), 598–612 | MR

[14] Ch. K. Gupta, N. S. Romanovskii, “Nëterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl