Generalized Kripke semantics for Nelson's logic
Algebra i logika, Tome 49 (2010) no. 5, pp. 630-653.

Voir la notice de l'article provenant de la source Math-Net.Ru

A completeness theorem for logics $N4^N$ and $N3^0$ is proved. A characterization by classes of $N4^N$- and $N3^0$-models is presented, and it is proved that all logics of four types $\eta(L)$, $\eta^3(L)$, $\eta^n(L)$, and $\eta^0(L)$ are Kripke complete iff so are their respective intuitionistic fragments $L$. A generalized Kripke semantics is introduced, and it is stated that such is equivalent to an algebraic semantics. The concept of a $p$-morphism between generalized frames is defined and basic statements on $p$-morphisms are proved.
Keywords: Nelson logic, Kripke semantics, algebraic semantics, generalized frame.
@article{AL_2010_49_5_a3,
     author = {E. I. Latkin},
     title = {Generalized {Kripke} semantics for {Nelson's} logic},
     journal = {Algebra i logika},
     pages = {630--653},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_5_a3/}
}
TY  - JOUR
AU  - E. I. Latkin
TI  - Generalized Kripke semantics for Nelson's logic
JO  - Algebra i logika
PY  - 2010
SP  - 630
EP  - 653
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_5_a3/
LA  - ru
ID  - AL_2010_49_5_a3
ER  - 
%0 Journal Article
%A E. I. Latkin
%T Generalized Kripke semantics for Nelson's logic
%J Algebra i logika
%D 2010
%P 630-653
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_5_a3/
%G ru
%F AL_2010_49_5_a3
E. I. Latkin. Generalized Kripke semantics for Nelson's logic. Algebra i logika, Tome 49 (2010) no. 5, pp. 630-653. http://geodesic.mathdoc.fr/item/AL_2010_49_5_a3/

[1] H. Rasiowa, “Algebraische Charakterisierung der intuitionistischen Logik mit starker Negation”, Constructivity in mathematics, Proc. Colloq. (Amsterdam, 1957), ed. A. Heyting, North-Holland, Amsterdam, 1959, 234–240 | MR

[2] S. P. Odintsov, “Algebraic semantics for paraconsistent Nelson's logic”, J. Log. Comput., 13:4 (2003), 453–468 | DOI | MR | Zbl

[3] S. P. Odintsov, “The class of extensions of Nelson paraconsistent logic”, Stud. Log., 80:2 (2005), 291–320 | DOI | MR | Zbl

[4] S. P. Odintsov, Constructive Negations and Paraconsistency, Trends in Logic – Studia Logica Library, 26, Springer, Dordrecht, 2008 | Zbl

[5] M. V. Zakharyaschev, “Sintaksis i semantika superintuitsionistskikh logik”, Algebra i logika, 28:4 (1989), 402–429 | MR

[6] M. V. Zakharyaschev, “Sintaksis i semantika modalnykh logik, soderzhaschikh S4”, Algebra i logika, 27:6 (1988), 659–689 | MR

[7] M. V. Stukacheva, “O kanonicheskikh formulakh dlya rasshirenii minimalnoi logiki”, Sib. elektron. matem. izv., 3 (2006), 312–334 http://semr.math.nsc.ru | MR | Zbl

[8] M. Kracht, “On extensions of intermediate logics by strong negation”, J. Philos. Log., 27:1 (1998), 49–73 | DOI | MR | Zbl

[9] N. N. Vorobëv, “Konstruktivnye propozitsionalnye ischisleniya s silnym otritsaniem”, Dokl. Akad. nauk SSSR, 85 (1952), 465–468 | MR

[10] L. L. Maksimova, “Predtablichnye superintuitsionistskie logiki”, Algebra i logika, 11:5 (1972), 558–570 | MR | Zbl

[11] R. Goldblatt, Logika vremeni i vychislimosti, OILKRL, M., 1992