Generalized Kripke semantics for Nelson's logic
Algebra i logika, Tome 49 (2010) no. 5, pp. 630-653

Voir la notice de l'article provenant de la source Math-Net.Ru

A completeness theorem for logics $N4^N$ and $N3^0$ is proved. A characterization by classes of $N4^N$- and $N3^0$-models is presented, and it is proved that all logics of four types $\eta(L)$, $\eta^3(L)$, $\eta^n(L)$, and $\eta^0(L)$ are Kripke complete iff so are their respective intuitionistic fragments $L$. A generalized Kripke semantics is introduced, and it is stated that such is equivalent to an algebraic semantics. The concept of a $p$-morphism between generalized frames is defined and basic statements on $p$-morphisms are proved.
Keywords: Nelson logic, Kripke semantics, algebraic semantics, generalized frame.
@article{AL_2010_49_5_a3,
     author = {E. I. Latkin},
     title = {Generalized {Kripke} semantics for {Nelson's} logic},
     journal = {Algebra i logika},
     pages = {630--653},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_5_a3/}
}
TY  - JOUR
AU  - E. I. Latkin
TI  - Generalized Kripke semantics for Nelson's logic
JO  - Algebra i logika
PY  - 2010
SP  - 630
EP  - 653
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_5_a3/
LA  - ru
ID  - AL_2010_49_5_a3
ER  - 
%0 Journal Article
%A E. I. Latkin
%T Generalized Kripke semantics for Nelson's logic
%J Algebra i logika
%D 2010
%P 630-653
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_5_a3/
%G ru
%F AL_2010_49_5_a3
E. I. Latkin. Generalized Kripke semantics for Nelson's logic. Algebra i logika, Tome 49 (2010) no. 5, pp. 630-653. http://geodesic.mathdoc.fr/item/AL_2010_49_5_a3/