Semivarieties of nilpotent groups
Algebra i logika, Tome 49 (2010) no. 5, pp. 577-590

Voir la notice de l'article provenant de la source Math-Net.Ru

Semivarieties of groups are quasivarieties defined by quasi-identities of the form $t=1\to f=1$. It is proved that a set of semivarieties in every variety of class two nilpotent $p$-groups of finite exponent having a commutator subgroup of exponent $p$ ($p$ is a prime) is at most countable. It is stated that a variety of class two nilpotent groups with commutator subgroup of exponent $p$ contains a set of semivarieties of the cardinality of the continuum.
Keywords: variety, semivariety, nilpotent group.
@article{AL_2010_49_5_a0,
     author = {A. I. Budkin},
     title = {Semivarieties of nilpotent groups},
     journal = {Algebra i logika},
     pages = {577--590},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_5_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Semivarieties of nilpotent groups
JO  - Algebra i logika
PY  - 2010
SP  - 577
EP  - 590
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_5_a0/
LA  - ru
ID  - AL_2010_49_5_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Semivarieties of nilpotent groups
%J Algebra i logika
%D 2010
%P 577-590
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_5_a0/
%G ru
%F AL_2010_49_5_a0
A. I. Budkin. Semivarieties of nilpotent groups. Algebra i logika, Tome 49 (2010) no. 5, pp. 577-590. http://geodesic.mathdoc.fr/item/AL_2010_49_5_a0/