Semivarieties of nilpotent groups
Algebra i logika, Tome 49 (2010) no. 5, pp. 577-590.

Voir la notice de l'article provenant de la source Math-Net.Ru

Semivarieties of groups are quasivarieties defined by quasi-identities of the form $t=1\to f=1$. It is proved that a set of semivarieties in every variety of class two nilpotent $p$-groups of finite exponent having a commutator subgroup of exponent $p$ ($p$ is a prime) is at most countable. It is stated that a variety of class two nilpotent groups with commutator subgroup of exponent $p$ contains a set of semivarieties of the cardinality of the continuum.
Keywords: variety, semivariety, nilpotent group.
@article{AL_2010_49_5_a0,
     author = {A. I. Budkin},
     title = {Semivarieties of nilpotent groups},
     journal = {Algebra i logika},
     pages = {577--590},
     publisher = {mathdoc},
     volume = {49},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_5_a0/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Semivarieties of nilpotent groups
JO  - Algebra i logika
PY  - 2010
SP  - 577
EP  - 590
VL  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_5_a0/
LA  - ru
ID  - AL_2010_49_5_a0
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Semivarieties of nilpotent groups
%J Algebra i logika
%D 2010
%P 577-590
%V 49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_5_a0/
%G ru
%F AL_2010_49_5_a0
A. I. Budkin. Semivarieties of nilpotent groups. Algebra i logika, Tome 49 (2010) no. 5, pp. 577-590. http://geodesic.mathdoc.fr/item/AL_2010_49_5_a0/

[1] A. Shafaat, “Lattices of subsemivarieties of certain varieties”, J. Austral. Math. Soc., 12:1 (1971), 15–20 | DOI | MR | Zbl

[2] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975), 123–142 | MR | Zbl

[3] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. un-ta, Barnaul, 2002

[4] A. I. Budkin, “O filtrakh v reshëtke kvazimnogoobrazii grupp”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 875–881 | MR | Zbl

[5] A. A. Vinogradov, “Kvazimnogoobraziya abelevykh grupp”, Algebra i logika, 4:6 (1965), 15–19 | MR | Zbl

[6] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauch. kniga, Novosibirsk, 1999 | Zbl

[7] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR