Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2010_49_4_a3, author = {V. G. Puzarenko}, title = {A semilattice of {numberings.~II}}, journal = {Algebra i logika}, pages = {498--519}, publisher = {mathdoc}, volume = {49}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/} }
V. G. Puzarenko. A semilattice of numberings.~II. Algebra i logika, Tome 49 (2010) no. 4, pp. 498-519. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/
[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR
[2] V. G. Puzarenko, “Ob odnoi polureshëtke numeratsii”, Matem. tr., 12:2 (2009), 170–209 | MR
[3] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[4] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspec. Math. Logic, Springer-Verlag, Berlin etc., 1987 | MR
[5] Yu. L. Ershov, Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk; Ekonomika, M., 2000 | MR
[6] J. Barwise, Admissible sets and structures. An approach to definability theory, Perspec. Math. Logic, Springer-Velag, Berlin, 1975 | MR | Zbl
[7] V. G. Puzarenko, “O vychislimosti nad modelyami razreshimykh teorii”, Algebra i logika, 39:2 (2000), 170–197 | MR | Zbl
[8] V. G. Puzarenko, “Obobschënnye numeratsii i opredelimost polya $\mathbb R$ v dopustimykh mnozhestvakh”, Vestnik NGU. Ser. matem., mekh., inform., 3:2 (2003), 107–117 | Zbl