A semilattice of numberings. II
Algebra i logika, Tome 49 (2010) no. 4, pp. 498-519

Voir la notice de l'article provenant de la source Math-Net.Ru

$\mathfrak c$-Universal semilattices $\mathfrak A$ of the power of the continuum (of an upper semilattice of $m$-degrees ) on admissible sets are studied. Moreover, it is shown that a semilattice of $\mathbb{HF}(\mathfrak M)$-numberings of a finite set is $\mathfrak c$-universal if $\mathfrak M$ is a countable model of a $\mathfrak c$-simple theory.
Keywords: computably enumerable set, $\mathbb A$-numbering, $m\Sigma$-reducibility, hereditarily finite superstructure, natural ordinal, upper semilattice, $\mathfrak c$-universal semilattice.
Mots-clés : admissible set
@article{AL_2010_49_4_a3,
     author = {V. G. Puzarenko},
     title = {A semilattice of {numberings.~II}},
     journal = {Algebra i logika},
     pages = {498--519},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/}
}
TY  - JOUR
AU  - V. G. Puzarenko
TI  - A semilattice of numberings. II
JO  - Algebra i logika
PY  - 2010
SP  - 498
EP  - 519
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/
LA  - ru
ID  - AL_2010_49_4_a3
ER  - 
%0 Journal Article
%A V. G. Puzarenko
%T A semilattice of numberings. II
%J Algebra i logika
%D 2010
%P 498-519
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/
%G ru
%F AL_2010_49_4_a3
V. G. Puzarenko. A semilattice of numberings. II. Algebra i logika, Tome 49 (2010) no. 4, pp. 498-519. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/