A semilattice of numberings.~II
Algebra i logika, Tome 49 (2010) no. 4, pp. 498-519.

Voir la notice de l'article provenant de la source Math-Net.Ru

$\mathfrak c$-Universal semilattices $\mathfrak A$ of the power of the continuum (of an upper semilattice of $m$-degrees ) on admissible sets are studied. Moreover, it is shown that a semilattice of $\mathbb{HF}(\mathfrak M)$-numberings of a finite set is $\mathfrak c$-universal if $\mathfrak M$ is a countable model of a $\mathfrak c$-simple theory.
Keywords: computably enumerable set, $\mathbb A$-numbering, $m\Sigma$-reducibility, hereditarily finite superstructure, natural ordinal, upper semilattice, $\mathfrak c$-universal semilattice.
Mots-clés : admissible set
@article{AL_2010_49_4_a3,
     author = {V. G. Puzarenko},
     title = {A semilattice of {numberings.~II}},
     journal = {Algebra i logika},
     pages = {498--519},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/}
}
TY  - JOUR
AU  - V. G. Puzarenko
TI  - A semilattice of numberings.~II
JO  - Algebra i logika
PY  - 2010
SP  - 498
EP  - 519
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/
LA  - ru
ID  - AL_2010_49_4_a3
ER  - 
%0 Journal Article
%A V. G. Puzarenko
%T A semilattice of numberings.~II
%J Algebra i logika
%D 2010
%P 498-519
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/
%G ru
%F AL_2010_49_4_a3
V. G. Puzarenko. A semilattice of numberings.~II. Algebra i logika, Tome 49 (2010) no. 4, pp. 498-519. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a3/

[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[2] V. G. Puzarenko, “Ob odnoi polureshëtke numeratsii”, Matem. tr., 12:2 (2009), 170–209 | MR

[3] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR

[4] R. I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspec. Math. Logic, Springer-Verlag, Berlin etc., 1987 | MR

[5] Yu. L. Ershov, Opredelimost i vychislimost, Nauchnaya kniga, Novosibirsk; Ekonomika, M., 2000 | MR

[6] J. Barwise, Admissible sets and structures. An approach to definability theory, Perspec. Math. Logic, Springer-Velag, Berlin, 1975 | MR | Zbl

[7] V. G. Puzarenko, “O vychislimosti nad modelyami razreshimykh teorii”, Algebra i logika, 39:2 (2000), 170–197 | MR | Zbl

[8] V. G. Puzarenko, “Obobschënnye numeratsii i opredelimost polya $\mathbb R$ v dopustimykh mnozhestvakh”, Vestnik NGU. Ser. matem., mekh., inform., 3:2 (2003), 107–117 | Zbl