An equational theory for a~nilpotent $A$-loop
Algebra i logika, Tome 49 (2010) no. 4, pp. 479-497.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a variety generated by a nilpotent $A$-loop has a decidable equational (quasiequational) theory. Thereby the question posed by A. I. Mal'tsev in [Mat. Sb., 69(111), № 1 (1966), 3–12] is answered in the negative, and moreover, a finitely presented nilpotent $A$-loop has a decidable word problem.
Keywords: equational theory, nilpotent $A$-loop, word problem.
@article{AL_2010_49_4_a2,
     author = {A. V. Kowalski and V. I. Ursu},
     title = {An equational theory for a~nilpotent $A$-loop},
     journal = {Algebra i logika},
     pages = {479--497},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/}
}
TY  - JOUR
AU  - A. V. Kowalski
AU  - V. I. Ursu
TI  - An equational theory for a~nilpotent $A$-loop
JO  - Algebra i logika
PY  - 2010
SP  - 479
EP  - 497
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/
LA  - ru
ID  - AL_2010_49_4_a2
ER  - 
%0 Journal Article
%A A. V. Kowalski
%A V. I. Ursu
%T An equational theory for a~nilpotent $A$-loop
%J Algebra i logika
%D 2010
%P 479-497
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/
%G ru
%F AL_2010_49_4_a2
A. V. Kowalski; V. I. Ursu. An equational theory for a~nilpotent $A$-loop. Algebra i logika, Tome 49 (2010) no. 4, pp. 479-497. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/

[1] R. C. Lyndon, “Two notes on nilpotent groups”, Proc. Am. Math. Soc., 3 (1952), 579–583 | DOI | MR | Zbl

[2] H. Neumann, Varieties of groups, Ergebn. Math. Grenzg., 37, Springer-Verlag, Berlin–Heidelberg–New York, 1967

[3] S. Oates, M. B. Powell, “Identical relations in finite groups”, J. Algebra, 1 (1964), 11–39 | DOI | MR | Zbl

[4] T. Evans, “Identities and relations in commutative Moufang loops”, J. Algebra, 31 (1974), 508–513 | DOI | MR | Zbl

[5] V. Ursu, “On identities of nilpotent Moufang loops”, Rev. Roum. Math. Pures Appl., 45:3 (2000), 537–548 | MR | Zbl

[6] A. I. Maltsev, “Tozhdestvennye sootnosheniya na mnogoobraziyakh kvazigrupp”, Matem. sb., 69(111):1 (1966), 3–12 | MR | Zbl

[7] V. D. Belousov, Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl

[8] R. H. Bruck, A survey of binary systems, Ergebn. Math. Grenzg., Neue Folge, 20, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1958 | MR | Zbl

[9] R. H. Bruck, L. J. Paige, “Loops whose inner mappings are automorphisms”, Ann. Math. (2), 63 (1956), 308–323 | DOI | MR | Zbl

[10] O. Chein, H. O. Pflugfelder, J. D. H. Smith (eds.), Quasigroups and loops: theory and applications, Sigma Ser. Pure Math., 8, Heldermann Verlag, Berlin etc., 1990 | MR | Zbl

[11] G. C. C. McKinsey, “The decision problem for some classes of sentences without quantifiers”, J. Symb. Log., 8 (1943), 61–76 | DOI | MR | Zbl