An equational theory for a nilpotent $A$-loop
Algebra i logika, Tome 49 (2010) no. 4, pp. 479-497

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a variety generated by a nilpotent $A$-loop has a decidable equational (quasiequational) theory. Thereby the question posed by A. I. Mal'tsev in [Mat. Sb., 69(111), No 1 (1966), 3–12] is answered in the negative, and moreover, a finitely presented nilpotent $A$-loop has a decidable word problem.
Keywords: equational theory, nilpotent $A$-loop, word problem.
@article{AL_2010_49_4_a2,
     author = {A. V. Kowalski and V. I. Ursu},
     title = {An equational theory for a~nilpotent $A$-loop},
     journal = {Algebra i logika},
     pages = {479--497},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/}
}
TY  - JOUR
AU  - A. V. Kowalski
AU  - V. I. Ursu
TI  - An equational theory for a nilpotent $A$-loop
JO  - Algebra i logika
PY  - 2010
SP  - 479
EP  - 497
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/
LA  - ru
ID  - AL_2010_49_4_a2
ER  - 
%0 Journal Article
%A A. V. Kowalski
%A V. I. Ursu
%T An equational theory for a nilpotent $A$-loop
%J Algebra i logika
%D 2010
%P 479-497
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/
%G ru
%F AL_2010_49_4_a2
A. V. Kowalski; V. I. Ursu. An equational theory for a nilpotent $A$-loop. Algebra i logika, Tome 49 (2010) no. 4, pp. 479-497. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/