Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2010_49_4_a2, author = {A. V. Kowalski and V. I. Ursu}, title = {An equational theory for a~nilpotent $A$-loop}, journal = {Algebra i logika}, pages = {479--497}, publisher = {mathdoc}, volume = {49}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/} }
A. V. Kowalski; V. I. Ursu. An equational theory for a~nilpotent $A$-loop. Algebra i logika, Tome 49 (2010) no. 4, pp. 479-497. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a2/
[1] R. C. Lyndon, “Two notes on nilpotent groups”, Proc. Am. Math. Soc., 3 (1952), 579–583 | DOI | MR | Zbl
[2] H. Neumann, Varieties of groups, Ergebn. Math. Grenzg., 37, Springer-Verlag, Berlin–Heidelberg–New York, 1967
[3] S. Oates, M. B. Powell, “Identical relations in finite groups”, J. Algebra, 1 (1964), 11–39 | DOI | MR | Zbl
[4] T. Evans, “Identities and relations in commutative Moufang loops”, J. Algebra, 31 (1974), 508–513 | DOI | MR | Zbl
[5] V. Ursu, “On identities of nilpotent Moufang loops”, Rev. Roum. Math. Pures Appl., 45:3 (2000), 537–548 | MR | Zbl
[6] A. I. Maltsev, “Tozhdestvennye sootnosheniya na mnogoobraziyakh kvazigrupp”, Matem. sb., 69(111):1 (1966), 3–12 | MR | Zbl
[7] V. D. Belousov, Osnovy teorii kvazigrupp i lup, Nauka, M., 1967 | MR | Zbl
[8] R. H. Bruck, A survey of binary systems, Ergebn. Math. Grenzg., Neue Folge, 20, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1958 | MR | Zbl
[9] R. H. Bruck, L. J. Paige, “Loops whose inner mappings are automorphisms”, Ann. Math. (2), 63 (1956), 308–323 | DOI | MR | Zbl
[10] O. Chein, H. O. Pflugfelder, J. D. H. Smith (eds.), Quasigroups and loops: theory and applications, Sigma Ser. Pure Math., 8, Heldermann Verlag, Berlin etc., 1990 | MR | Zbl
[11] G. C. C. McKinsey, “The decision problem for some classes of sentences without quantifiers”, J. Symb. Log., 8 (1943), 61–76 | DOI | MR | Zbl