The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$
Algebra i logika, Tome 49 (2010) no. 4, pp. 451-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\wedge^k\mathbb R^n$ be the $k$th outer power of a space $\mathbb R^n$, $V(m,n,k)=S^m(\wedge^k\mathbb R^n)$ the $m$th symmetric power of $\mathbb R^n$, and $V_0=L((x_1\wedge\dots\wedge x_k)^m):x_i\in\mathbb R^n$). We construct a basis and compute a dimension of $V_0$ for $m=2$, and for $m$ arbitrary, present an effective algorithm of finding a basis and computing a dimension for the space $V_0(m,n,k)$. An upper bound for the dimension of $V_0$ is established, which implies that $$ \lim_{m\to1}\frac{\dim V_0(m,n,k)}{\dim V(m,n,k)}=0. $$ The results obtained are applied to study a Grassmann variety and finite-dimensional Lie algebras.
Keywords: symmetric power of space, outer power of space, Grassmann variety.
@article{AL_2010_49_4_a1,
     author = {V. Yu. Gubarev},
     title = {The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$},
     journal = {Algebra i logika},
     pages = {451--478},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a1/}
}
TY  - JOUR
AU  - V. Yu. Gubarev
TI  - The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$
JO  - Algebra i logika
PY  - 2010
SP  - 451
EP  - 478
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_4_a1/
LA  - ru
ID  - AL_2010_49_4_a1
ER  - 
%0 Journal Article
%A V. Yu. Gubarev
%T The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$
%J Algebra i logika
%D 2010
%P 451-478
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_4_a1/
%G ru
%F AL_2010_49_4_a1
V. Yu. Gubarev. The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$. Algebra i logika, Tome 49 (2010) no. 4, pp. 451-478. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a1/

[1] V. A. Sharafutdinov, Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR | Zbl

[2] V. Sharafutdinov, “Slice-by-slice reconstruction algorithm for vector tomoghraphy with incomplete data”, Inverse Probl., 23:6 (2007), 2603–2627 | DOI | MR | Zbl

[3] V. Yu. Gubarev, “O podprostranstve $L((x\wedge y)^m)$ v $S^m(\wedge^2\mathbb R^4)$”, Sib. matem. zh., 50:3 (2009), 503–514 | MR

[4] A. I. Kostrikin, Yu. I. Manin, Lineinaya algebra i geometriya, izd-vo Mosk. un-ta, M., 1980 | MR | Zbl

[5] J. A. MacDougall, “A survey of length problems in Grassmann spaces”, Algebraic structures and applications, Proc. 1st West. Aust. conf. algebra (Univ. West. Aust., 1980), Lect. Notes Pure Appl. Math., 74, Marcel Dekker, 1982, 133–148 | MR

[6] E. B. Vinberg, Kurs algebry, Faktorial Press, M., 2001

[7] Dzh. Riordan, Kombinatornye tozhdestva, Nauka, M., 1982 | MR

[8] S. R. Ghorpade, A. R. Ratil, H. K. Pillai, “Decomposable subspaces, linear sections of Grassmann varieties, and higher weights of Grassmann codes”, Finite Fields Appl., 15:1 (2009), 54–68 | DOI | MR | Zbl

[9] R. Westwick, “Linear transformations on Grassmann spaces”, Pac. J. Math., 14 (1964), 1123–1127 | MR | Zbl

[10] L. J. Cummings, “Decomposable symmetric tensors”, Pac. J. Math., 35 (1970), 65–77 | MR | Zbl