The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$
Algebra i logika, Tome 49 (2010) no. 4, pp. 451-478

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\wedge^k\mathbb R^n$ be the $k$th outer power of a space $\mathbb R^n$, $V(m,n,k)=S^m(\wedge^k\mathbb R^n)$ the $m$th symmetric power of $\mathbb R^n$, and $V_0=L((x_1\wedge\dots\wedge x_k)^m):x_i\in\mathbb R^n$). We construct a basis and compute a dimension of $V_0$ for $m=2$, and for $m$ arbitrary, present an effective algorithm of finding a basis and computing a dimension for the space $V_0(m,n,k)$. An upper bound for the dimension of $V_0$ is established, which implies that $$ \lim_{m\to1}\frac{\dim V_0(m,n,k)}{\dim V(m,n,k)}=0. $$ The results obtained are applied to study a Grassmann variety and finite-dimensional Lie algebras.
Keywords: symmetric power of space, outer power of space, Grassmann variety.
@article{AL_2010_49_4_a1,
     author = {V. Yu. Gubarev},
     title = {The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$},
     journal = {Algebra i logika},
     pages = {451--478},
     publisher = {mathdoc},
     volume = {49},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_4_a1/}
}
TY  - JOUR
AU  - V. Yu. Gubarev
TI  - The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$
JO  - Algebra i logika
PY  - 2010
SP  - 451
EP  - 478
VL  - 49
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_4_a1/
LA  - ru
ID  - AL_2010_49_4_a1
ER  - 
%0 Journal Article
%A V. Yu. Gubarev
%T The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$
%J Algebra i logika
%D 2010
%P 451-478
%V 49
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_4_a1/
%G ru
%F AL_2010_49_4_a1
V. Yu. Gubarev. The subspace $L((x_1\wedge\dots\wedge x_k)^m)$ of $S^m(\wedge^k\mathbb R^n)$. Algebra i logika, Tome 49 (2010) no. 4, pp. 451-478. http://geodesic.mathdoc.fr/item/AL_2010_49_4_a1/