Isotopes of prime $(-1,1)$- and Jordan algebras
Algebra i logika, Tome 49 (2010) no. 3, pp. 388-423.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with adjoint commutator and Jordan algebras of isotopes of prime strictly $(-1,1)$-algebras. It is proved that a system of identities of the form $[x_1,x_2,x_2,x_3,\dots,x_n]$ for $n=2,\dots,5$ is discernible on isotopes of prime $(-1,1)$-algebras. Also it is shown that adjoint Jordan algebras for suitable isotopes of prime $(-1,1)$-algebras may possess distinct sets of identities. In particular, isotopes of a prime Jordan monster have different sets of identities in general.
Keywords: right alternative algebra, strictly $(-1,1)$-algebra, Jordan algebra, prime algebra, isotope, identity, Lie nilpotence.
Mots-clés : homotope
@article{AL_2010_49_3_a5,
     author = {S. V. Pchelintsev},
     title = {Isotopes of prime $(-1,1)$- and {Jordan} algebras},
     journal = {Algebra i logika},
     pages = {388--423},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_3_a5/}
}
TY  - JOUR
AU  - S. V. Pchelintsev
TI  - Isotopes of prime $(-1,1)$- and Jordan algebras
JO  - Algebra i logika
PY  - 2010
SP  - 388
EP  - 423
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_3_a5/
LA  - ru
ID  - AL_2010_49_3_a5
ER  - 
%0 Journal Article
%A S. V. Pchelintsev
%T Isotopes of prime $(-1,1)$- and Jordan algebras
%J Algebra i logika
%D 2010
%P 388-423
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_3_a5/
%G ru
%F AL_2010_49_3_a5
S. V. Pchelintsev. Isotopes of prime $(-1,1)$- and Jordan algebras. Algebra i logika, Tome 49 (2010) no. 3, pp. 388-423. http://geodesic.mathdoc.fr/item/AL_2010_49_3_a5/

[1] A. A. Albert, “Non-associative algebras, I, II”, Ann. Math. (2), 43 (1942), 685–723 | DOI | MR

[2] A. I. Maltsev, “Ob odnom predstavlenii neassotsiativnykh kolets”, Uspekhi matem. nauk, 7:1 (1952), 181–185 | MR | Zbl

[3] R. H. Bruck, A survey of binary systems, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, 20, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1958 | MR | Zbl

[4] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[5] K. McCrimmon, “Homotopes of alternative algebras”, Math. Ann., 191:4 (1971), 253–262 | DOI | MR | Zbl

[6] S. V. Pchelintsev, “Pervichnye alternativnye algebry”, Fundam. prikl. matem., 4:2 (1998), 651–657 | MR | Zbl

[7] M. Babikov, Isotopes of alternative algebras, preprint

[8] M. Babikov, “Isotopy and identities in alternative algebras”, Proc. Am. Math. Soc., 125:6 (1997), 1571–1575 | DOI | MR | Zbl

[9] M. E. Dedlovskaya, “Gomotopy $(-1,1)$-algebr ot dvukh porozhdayuschikh”, Matem. zametki, 59:4 (1996), 551–557 | MR | Zbl

[10] M. E. Dedlovskaya, “Izotopy svobodnoi algebry tipa $(-1,1)$ s tremya obrazuyuschimi”, Fundam. prikl. matem., 6:1 (2000), 121–131 | MR | Zbl

[11] E. I. Zelmanov, “O pervichnykh iordanovykh algebrakh, II”, Sib. matem. zh., 24:1 (1983), 89–104 | MR

[12] S. V. Pchelintsev, “Pervichnye algebry i absolyutnye deliteli nulya”, Izv. AN SSSR. Ser. matem., 50:1 (1986), 79–100 | MR | Zbl

[13] E. Kleinfeld, “Right alternative rings”, Proc. Am. Math. Soc., 4 (1953), 939–944 | MR | Zbl

[14] R. E. Roomeldi, “Tsentry svobodnogo $(-1,1)$-koltsa”, Sib. matem. zh., 18:4 (1977), 861–876 | MR

[15] I. R. Hentzel, “The characterization of $(-1,1)$-rings”, J. Algebra, 30 (1974), 236–258 | DOI | MR | Zbl

[16] N. Jacobson, Structure and representations of Jordan algebras, Colloq. Publ., 39, Am. Math. Soc., Providence, RI, 1968 | MR | Zbl

[17] S. V. Pchelintsev, “Tozhdestva svobodnoi $(-1,1)$-algebry ranga 3”, Issledovaniya po teorii kolets i algebr, Trudy In-ta matem. SO AN SSSR, 16, Nauka, Novosibirsk, 1989, 110–131 | MR

[18] S. V. Pchelintsev, “O mnogoobraziyakh, porozhdënnykh svobodnymi algebrami tipa $(-1,1)$ konechnogo ranga”, Sib. matem. zh., 28:2 (1987), 149–158 | MR | Zbl

[19] R. E. Roomeldi, “Nizhnii nil-radikal $(-1,1)$-kolets”, Algebra i logika, 12:3 (1973), 323–332 | MR

[20] I. R. Hentzel, “The commuting nucleus of right alternative rings”, Nonassociative algebra and its applications, Proc. the fourth int. conf. (Sao Paulo, Brazil), Lect. Notes Pure Appl. Math., 211, eds. R. Costa et al., Marcel Dekker, New York, 2000, 153–169 | MR | Zbl

[21] V. G. Skosyrskii, “Strogo pervichnye nekommutativnye iordanovy algebry”, Issledovaniya po teorii kolets i algebr, Trudy In-ta matem. SO AN SSSR, 16, Nauka, Novosibirsk, 1989, 131–164 | MR

[22] S. V. Pchelintsev, “O tsentralnykh idealakh konechno porozhdënnykh binarno $(-1,1)$-algebr”, Matem. sb., 193:4 (2002), 113–134 | MR | Zbl

[23] A. Thedy, “Right alternative rings”, J. Algebra, 37:1 (1975), 1–43 | DOI | MR | Zbl

[24] S. V. Pchelintsev, “O mnogoobrazii algebr tipa $(-1,1)$”, Algebra i logika, 25:2 (1986), 154–171 | MR | Zbl

[25] A. A. Buchnev, V. T. Filippov, I. P. Shestakov, “Checking identities of nonassociative algebras by computer”, III Siberian Congress on Applied and Industrial Mathematics, INPRIM-98, Abstracts, Ch. 5 (Novosibirsk, 1998), 1998, 9