Simple weakly transitive modal algebras
Algebra i logika, Tome 49 (2010) no. 3, pp. 346-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

Weakly transitive modal algebras are studied. It is proved that the class of simple weakly transitive algebras coincides with the class of simple $DL$-algebras. A full description is given for finitely generated simple $DL$-algebras together with their embeddings. As a consequence, it is shown that the varieties of weakly transitive algebras and of $DL$-algebras are not weakly amalgamable, and that modal logics $wK4$ and $DL$ do not possess the weak interpolation property.
Keywords: weakly transitive modal algebra, $DL$-algebra, weakly amalgamable variety, weak interpolation property.
@article{AL_2010_49_3_a2,
     author = {A. V. Karpenko and L. L. Maksimova},
     title = {Simple weakly transitive modal algebras},
     journal = {Algebra i logika},
     pages = {346--365},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_3_a2/}
}
TY  - JOUR
AU  - A. V. Karpenko
AU  - L. L. Maksimova
TI  - Simple weakly transitive modal algebras
JO  - Algebra i logika
PY  - 2010
SP  - 346
EP  - 365
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_3_a2/
LA  - ru
ID  - AL_2010_49_3_a2
ER  - 
%0 Journal Article
%A A. V. Karpenko
%A L. L. Maksimova
%T Simple weakly transitive modal algebras
%J Algebra i logika
%D 2010
%P 346-365
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_3_a2/
%G ru
%F AL_2010_49_3_a2
A. V. Karpenko; L. L. Maksimova. Simple weakly transitive modal algebras. Algebra i logika, Tome 49 (2010) no. 3, pp. 346-365. http://geodesic.mathdoc.fr/item/AL_2010_49_3_a2/

[1] L. L. Esakia, “Slabaya tranzitivnost – restitutsiya”, Logicheskie issledovaniya, 8, In-t filosofii RAN, M., 2002, 244–255 | MR

[2] G. Bezhanishvili, L. Esakia, D. Gabelaia, “Some results on modal axiomatization and definability for topological spaces”, Stud. Log., 81:3 (2005), 325–355 | DOI | MR | Zbl

[3] K. Segerberg, “A note on the logic of elsewhere”, Theoria, 46:2–3 (1980), 183–187 | MR

[4] M. de Rijke, “The modal logic of inequality”, J. Symb. Log., 57:2 (1992), 566–584 | DOI | MR | Zbl

[5] V. Goranko, “Modal definability in enriched languages”, Notre Dame J. Formal Logic, 31:1 (1990), 81–105 | DOI | MR | Zbl

[6] V. Shehtman, “ ‘Everywhere’ and ‘here’ ”, J. Appl. Non-Class. Log., 9:2–3 (1999), 369–379 | MR | Zbl

[7] A. Kudinov, “Topological modal logics with difference modality”, Sel. papers 6th conf., AiML 2006 (Noosa, Australia, September 25–28, 2006), Advances in modal logic, 6, eds. G. Governatori et al., College Publ., London, 2006, 319–332 | MR | Zbl

[8] D. M. Gabbay, L. Maksimova, Interpolation and definability. Modal and intuitionistic logics, Oxford Logic Guides, Oxford Sci. Publ., 46, Clarendon Press, Oxford, 2005 | MR | Zbl

[9] L. Maksimova, “Definability and interpolation in non-classical logics”, Stud. Log., 82:2 (2006), 271–291 | DOI | MR | Zbl

[10] L. Maksimova, “On a form of interpolation in modal logic”, Logic Colloq. 2005; Bull. Symb. Log., 12:2 (2006), 340 | MR

[11] L. L. Maksimova, “Slabaya forma interpolyatsii v ekvatsionalnoi logike”, Algebra i logika, 47:1 (2008), 94–107 | MR | Zbl

[12] A. V. Karpenko, “Slaboe interpolyatsionnoe svoistvo v rasshireniyakh logik $S4$ i $K4$”, Algebra i logika, 47:6 (2008), 705–722 | MR

[13] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 ; E. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972 | MR | MR

[14] S. S. Goncharov, Schëtnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[15] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[16] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh i amalgamiruemye mnogoobraziya topobulevykh algebr”, Algebra i logika, 18:5 (1979), 556–586 | MR | Zbl

[17] K. Segerberg, An essay in classical modal logic, v. 1–3, Filosofiska Studier., Univ. Uppsala, Uppsala, 1971 | MR | Zbl

[18] A. Chagrov, M. Zakharyaschev, Modal Logics, Oxford Logic Guides, 35, Clarendon Press, Oxford, 1997 | MR | Zbl