An independent system of identities for a~variety of mono-Leibniz algebras
Algebra i logika, Tome 49 (2010) no. 2, pp. 175-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of a mono-Leibniz algebra generalizing the concept of a Leibniz algebra. Namely, an algebra $A$ over a field $K$, $\operatorname{char}K\ne2$, is mono-Leibniz if its one-generated subalgebras each is a Leibniz algebra. It is proved that a variety $W$ of mono-Leibniz algebras over an infinite field $K$ is defined by an independent system of identities such as $$ x(xx)=0,\qquad x[(xx)x]=0. $$ Examples of mono-Leibniz algebras are given which show that $W$ is not a Schreier variety.
Keywords: mono-Leibniz algebra, variety, system of identities.
@article{AL_2010_49_2_a1,
     author = {A. T. Gainov},
     title = {An independent system of identities for a~variety of {mono-Leibniz} algebras},
     journal = {Algebra i logika},
     pages = {175--180},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_2_a1/}
}
TY  - JOUR
AU  - A. T. Gainov
TI  - An independent system of identities for a~variety of mono-Leibniz algebras
JO  - Algebra i logika
PY  - 2010
SP  - 175
EP  - 180
VL  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_2_a1/
LA  - ru
ID  - AL_2010_49_2_a1
ER  - 
%0 Journal Article
%A A. T. Gainov
%T An independent system of identities for a~variety of mono-Leibniz algebras
%J Algebra i logika
%D 2010
%P 175-180
%V 49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_2_a1/
%G ru
%F AL_2010_49_2_a1
A. T. Gainov. An independent system of identities for a~variety of mono-Leibniz algebras. Algebra i logika, Tome 49 (2010) no. 2, pp. 175-180. http://geodesic.mathdoc.fr/item/AL_2010_49_2_a1/

[1] J.-L. Loday, T. Pirashvili, “Universal enveloping algebras of Leibniz algebras and (co)homology”, Math. Ann., 296:1 (1993), 139–158 | DOI | MR | Zbl

[2] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl

[3] U. U. Umirbaev, “O shreierovykh mnogoobraziyakh algebr”, Algebra i logika, 33:3 (1994), 317–340 | MR | Zbl