Simple structures with complex symmetry
Algebra i logika, Tome 49 (2010) no. 1, pp. 98-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the automorphism spectrum of a computable structure $\mathcal M$, a complexity measure of the symmetries of $\mathcal M$, and prove that certain sets of Turing degrees can be realized as automorphism spectra, while certain others cannot.
Keywords: complexity measure of symmetries of computable structure, automorphism spectrum.
@article{AL_2010_49_1_a4,
     author = {V. Harizanov and R. Miller and A. S. Morozov},
     title = {Simple structures with complex symmetry},
     journal = {Algebra i logika},
     pages = {98--134},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_1_a4/}
}
TY  - JOUR
AU  - V. Harizanov
AU  - R. Miller
AU  - A. S. Morozov
TI  - Simple structures with complex symmetry
JO  - Algebra i logika
PY  - 2010
SP  - 98
EP  - 134
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_1_a4/
LA  - ru
ID  - AL_2010_49_1_a4
ER  - 
%0 Journal Article
%A V. Harizanov
%A R. Miller
%A A. S. Morozov
%T Simple structures with complex symmetry
%J Algebra i logika
%D 2010
%P 98-134
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_1_a4/
%G ru
%F AL_2010_49_1_a4
V. Harizanov; R. Miller; A. S. Morozov. Simple structures with complex symmetry. Algebra i logika, Tome 49 (2010) no. 1, pp. 98-134. http://geodesic.mathdoc.fr/item/AL_2010_49_1_a4/