Simple structures with complex symmetry
Algebra i logika, Tome 49 (2010) no. 1, pp. 98-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the automorphism spectrum of a computable structure $\mathcal M$, a complexity measure of the symmetries of $\mathcal M$, and prove that certain sets of Turing degrees can be realized as automorphism spectra, while certain others cannot.
Keywords: complexity measure of symmetries of computable structure, automorphism spectrum.
@article{AL_2010_49_1_a4,
     author = {V. Harizanov and R. Miller and A. S. Morozov},
     title = {Simple structures with complex symmetry},
     journal = {Algebra i logika},
     pages = {98--134},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_1_a4/}
}
TY  - JOUR
AU  - V. Harizanov
AU  - R. Miller
AU  - A. S. Morozov
TI  - Simple structures with complex symmetry
JO  - Algebra i logika
PY  - 2010
SP  - 98
EP  - 134
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_1_a4/
LA  - ru
ID  - AL_2010_49_1_a4
ER  - 
%0 Journal Article
%A V. Harizanov
%A R. Miller
%A A. S. Morozov
%T Simple structures with complex symmetry
%J Algebra i logika
%D 2010
%P 98-134
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_1_a4/
%G ru
%F AL_2010_49_1_a4
V. Harizanov; R. Miller; A. S. Morozov. Simple structures with complex symmetry. Algebra i logika, Tome 49 (2010) no. 1, pp. 98-134. http://geodesic.mathdoc.fr/item/AL_2010_49_1_a4/

[1] Dimitrov R., Harizanov V., Morozov A., “Dependence relations in computably rigid computable vector spaces”, Ann. Pure Appl. Logic, 132:1 (2005), 97–108 | DOI | MR | Zbl

[2] Morozov A. S., “Zhestkie konstruktivnye moduli”, Algebra i logika, 28:5 (1989), 570–583 | MR | Zbl

[3] Hirschfeldt D. R., Khoussainov B., Shore R. A., Slinko A. M., “Degree spectra and computable dimensions in algebraic structures”, Ann. Pure Appl. Logic, 115:1–3 (2002), 71–113 | DOI | MR | Zbl

[4] Soare R. I., Recursively enumerable sets and degrees, A study of computable functions and computably generated sets, Springer-Verlag, Berlin, 1987 ; R. I. Soar, Vychislimo perechislimye mnozhestva i stepeni. Izuchenie vychislimykh funk- tsii i vychislimo perechislimykh mnozhestv, Kazanskoe matem. ob-vo, Kazan, 2000 | MR | MR | Zbl

[5] Marker D., “Non $\Sigma_n$ axiomatizable almost strongly minimal theories”, J. Symb. Log., 54:3 (1989), 921–927 | DOI | MR | Zbl

[6] Fokina E., Kalimullin I., Miller R. G., Degrees of categoricity of computable structures (to appear)

[7] Kreisel G., Shoenfield J., Wang H., “Number theoretic concepts and recursive well-orderings”, Arch. Math. Logik Grundlagenforsch, 5 (1961), 42–64 | DOI | MR | Zbl

[8] Hirschfeldt D. R., unpublished result

[9] Schmerl J., unpublished result

[10] Kueker D. W., “Definability, automorphisms, and infinitary languages”, Syntax Semantics infinit. Languages (Symposium Ucla, 1967), Lect. Notes Math., 72, ed. J. Barwise, Springer-Verlag, Berlin, 1968, 152–165 | MR

[11] Jockusch C. G. (jun.), McLaughlin T. G., “Countable retracing functions and $\Pi^0_2$ predicates”, Pac. J. Math., 30 (1969), 67–93 | MR | Zbl

[12] Odifreddi P. G., Classical recursion theory, v. II, Studies Logic Found. Math., 143, North-Holland, Amsterdam, 1999 | MR

[13] Morozov A. S., “Groups of computable automorphisms”, Handbook of recursive mathematics, v. 1, Stud. Logic Found. Math., 138, North-Holland, Amsterdam, 1998, 311–345 | MR

[14] Sacks G. E., Higher type recursion theory, Perspect. Math. Log., Springer-Verlag, Berlin, 1990 | MR

[15] Hilbert D., Bernays P., Grundlagen der Mathematik, v. 2, Die Grundlehren d. math. Wiss. in Einzeldarstell. mit besonderer Berucksichtigung d. Anwendungsgebiete, 50, Julius Springer, Berlin, 1939 | Zbl

[16] Morozov A. S., “Funktsionalnye derevya i avtomorfizmy modelei”, Algebra i logika, 32:1 (1993), 54–72 | MR | Zbl

[17] Jockusch C. G. (jun.), Shore R. A., “Pseudo-jump operators. II. Transfinite iterations, hierarchies, and minimal covers”, J. Symb. Log., 49 (1984), 1209–1236 | MR

[18] Yates C. E. M., “On the degrees of index sets”, Trans. Am. Math. Soc., 121 (1966), 309–328 | MR | Zbl