Structure of the automorphism group for partially commutative class two nilpotent groups
Algebra i logika, Tome 49 (2010) no. 1, pp. 60-97

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring, which is either a ring of integers or a field of zero characteristic. For every finite graph $\Gamma$, we construct an $R$-arithmetic linear group $H(\Gamma)$. The group $H(\Gamma)$ is realized as the factor automorphism group of a partially commutative class two nilpotent $R$-group $G_\Gamma$. Also we describe the structure of the entire automorphism group of a partially commutative nilpotent $R$-group of class two.
Mots-clés : automorphism group
Keywords: partially commutative nilpotent group, arithmetic group, commutativity graph.
@article{AL_2010_49_1_a3,
     author = {V. N. Remeslennikov and A. V. Treier},
     title = {Structure of the automorphism group for partially commutative class two nilpotent groups},
     journal = {Algebra i logika},
     pages = {60--97},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/}
}
TY  - JOUR
AU  - V. N. Remeslennikov
AU  - A. V. Treier
TI  - Structure of the automorphism group for partially commutative class two nilpotent groups
JO  - Algebra i logika
PY  - 2010
SP  - 60
EP  - 97
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/
LA  - ru
ID  - AL_2010_49_1_a3
ER  - 
%0 Journal Article
%A V. N. Remeslennikov
%A A. V. Treier
%T Structure of the automorphism group for partially commutative class two nilpotent groups
%J Algebra i logika
%D 2010
%P 60-97
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/
%G ru
%F AL_2010_49_1_a3
V. N. Remeslennikov; A. V. Treier. Structure of the automorphism group for partially commutative class two nilpotent groups. Algebra i logika, Tome 49 (2010) no. 1, pp. 60-97. http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/