Structure of the automorphism group for partially commutative class two nilpotent groups
Algebra i logika, Tome 49 (2010) no. 1, pp. 60-97
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be a ring, which is either a ring of integers or a field of zero characteristic. For every finite graph $\Gamma$, we construct an $R$-arithmetic linear group $H(\Gamma)$. The group $H(\Gamma)$ is realized as the factor automorphism group of a partially commutative class two nilpotent $R$-group $G_\Gamma$. Also we describe the structure of the entire automorphism group of a partially commutative nilpotent $R$-group of class two.
Mots-clés :
automorphism group
Keywords: partially commutative nilpotent group, arithmetic group, commutativity graph.
Keywords: partially commutative nilpotent group, arithmetic group, commutativity graph.
@article{AL_2010_49_1_a3,
author = {V. N. Remeslennikov and A. V. Treier},
title = {Structure of the automorphism group for partially commutative class two nilpotent groups},
journal = {Algebra i logika},
pages = {60--97},
publisher = {mathdoc},
volume = {49},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/}
}
TY - JOUR AU - V. N. Remeslennikov AU - A. V. Treier TI - Structure of the automorphism group for partially commutative class two nilpotent groups JO - Algebra i logika PY - 2010 SP - 60 EP - 97 VL - 49 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/ LA - ru ID - AL_2010_49_1_a3 ER -
V. N. Remeslennikov; A. V. Treier. Structure of the automorphism group for partially commutative class two nilpotent groups. Algebra i logika, Tome 49 (2010) no. 1, pp. 60-97. http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/