Structure of the automorphism group for partially commutative class two nilpotent groups
Algebra i logika, Tome 49 (2010) no. 1, pp. 60-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring, which is either a ring of integers or a field of zero characteristic. For every finite graph $\Gamma$, we construct an $R$-arithmetic linear group $H(\Gamma)$. The group $H(\Gamma)$ is realized as the factor automorphism group of a partially commutative class two nilpotent $R$-group $G_\Gamma$. Also we describe the structure of the entire automorphism group of a partially commutative nilpotent $R$-group of class two.
Mots-clés : automorphism group
Keywords: partially commutative nilpotent group, arithmetic group, commutativity graph.
@article{AL_2010_49_1_a3,
     author = {V. N. Remeslennikov and A. V. Treier},
     title = {Structure of the automorphism group for partially commutative class two nilpotent groups},
     journal = {Algebra i logika},
     pages = {60--97},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/}
}
TY  - JOUR
AU  - V. N. Remeslennikov
AU  - A. V. Treier
TI  - Structure of the automorphism group for partially commutative class two nilpotent groups
JO  - Algebra i logika
PY  - 2010
SP  - 60
EP  - 97
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/
LA  - ru
ID  - AL_2010_49_1_a3
ER  - 
%0 Journal Article
%A V. N. Remeslennikov
%A A. V. Treier
%T Structure of the automorphism group for partially commutative class two nilpotent groups
%J Algebra i logika
%D 2010
%P 60-97
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/
%G ru
%F AL_2010_49_1_a3
V. N. Remeslennikov; A. V. Treier. Structure of the automorphism group for partially commutative class two nilpotent groups. Algebra i logika, Tome 49 (2010) no. 1, pp. 60-97. http://geodesic.mathdoc.fr/item/AL_2010_49_1_a3/

[1] Esyp E. S., Kazachkov I. V., Remeslennikov V. N., “Divisibility theory and complexity of algorithms for free partially commutative groups”, Groups, languages, algorithms, Contemp. Math., 378, Amer. Math. Soc., Providence, RI, 2005, 319–348, arXiv: math/0512401v2 | MR | Zbl

[2] Charney R., “An introduction to right-angled Artin groups”, Geom. Dedicata, 125:1 (2007), 141–158, arXiv: math/0610668v1 | DOI | MR | Zbl

[3] Duncan A. J., Kazachkov I. V., Remeslennikov V. N., Authomorphisms of partially commutative groups, arXiv: 0803.2213v1

[4] Charney R., Crisp J., Vogtmann K., “Automorphisms of two-dimensional right-angled Artin groups”, Geom. Topol., 11 (2007), 2227–2264, arXiv: math/0610980v2 | DOI | MR | Zbl

[5] Laurence M. R., “A generating set for the automorphism group of a graph group”, J. Lond. Math. Soc. II Ser., 52:2 (1995), 318–334 | MR | Zbl

[6] Servatius H., “Automorphisms of graph groups”, J. Algebra, 126:1 (1989), 34–60 | DOI | MR | Zbl

[7] Myasnikov A. G., Remeslennikov V. N., “Izomorfizmy i elementarnye svoistva nilpotentnykh stepennykh grupp”, Dokl. AN SSSR, 258:5 (1981), 1056–1059 | MR | Zbl

[8] Mischenko A. A., Treier A. V., “Grafy kommutativnosti dlya chastichno kommutativnykh dvustupenno nilpotentnykh $Q$-grupp”, Sib. elektron. matem. izv., 4 (2007), 460–481 http://semr.math.nsc.ru/v4/p460-481.pdf | MR

[9] Duncan A. J., Kazachkov I. V., Remeslennikov V. N., “Orthogonal systems in finite graphs”, Sib. Electr. Math. Rep., 5 (2008), 151–176 http://semr.math.nsc.ru/v5/p151-176.pdf | MR

[10] Mischenko A. A., Treier A. V., “Struktura tsentralizatorov dlya chastichno kommutativnoi dvustupenno nilpotentnoi $Q$-gruppy”, Vest. Omsk. gos. un-ta, Spets. vypusk “Kombinatornye metody algebry i slozhnost vychislenii” (2007), 98–102

[11] Droms C., “Isomorphisms of graph groups”, Proc. Am. Math. Soc., 100 (1987), 407–408 | MR | Zbl

[12] Hang Kim K., Makar-Limanov L., Neggers J., Roush F. W., “Graph Algebras”, J. Algebra, 64 (1980), 46–51 | DOI | MR | Zbl

[13] Noskov G. A., “The image of the authomorphism group of a graph group under the abelinization map”, Vest. Novosib. gos. un-ta. Cer. matem., mekh., inform. (to appear)