Irreducible algebraic sets over divisible decomposed rigid groups
Algebra i logika, Tome 48 (2009) no. 6, pp. 793-818.

Voir la notice de l'article provenant de la source Math-Net.Ru

A soluble group $G$ is said to be rigid if it contains a normal series of the form $$ G=G_1>G_2>\dots>G_p>G_{p+1}=1, $$ whose quotients $G_i/G_{i+1}$ are Abelian and are torsion-free when treated as right $\mathbb Z[G/G_i]$-modules. Free soluble groups are important examples of rigid groups. A rigid group $G$ is divisible if elements of a quotient $G_i/G_{i+1}$ are divisible by nonzero elements of a ring $\mathbb Z[G/G_i]$, or, in other words, $G_i/G_{i+1}$ is a vector space over a division ring $Q(G/G_i)$ of quotients of that ring. A rigid group $G$ is decomposed if it splits into a semidirect product $A_1A_2\dots A_p$ of Abelian groups $A_i\cong G_i/G_{i+1}$. A decomposed divisible rigid group is uniquely defined by cardinalities $\alpha_i$ of bases of suitable vector spaces $A_i$, and we denote it by $M(\alpha_1,\dots,\alpha_ p)$. The concept of a rigid group appeared in [arXiv:0808.2932v1 [math.GR]], where the dimension theory is constructed for algebraic geometry over finitely generated rigid groups. In [Algebra i Logika, 48:2 (2009), 258–279], all rigid groups were proved to be equationally Noetherian, and it was stated that any rigid group is embedded in a suitable decomposed divisible rigid group $M(\alpha_1,\dots,\alpha_ p)$. Our present goal is to derive important information directly about algebraic geometry over $M(\alpha_1,\dots,\alpha_ p)$. Namely, irreducible algebraic sets are characterized in the language of coordinate groups of these sets, and we describe groups that are universally equivalent over $M(\alpha_1,\dots,\alpha_ p)$ using the language of equations.
Keywords: algebraic geometry, irreducible algebraic set, universally equivalent groups.
Mots-clés : rigid group
@article{AL_2009_48_6_a4,
     author = {N. S. Romanovskii},
     title = {Irreducible algebraic sets over divisible decomposed rigid groups},
     journal = {Algebra i logika},
     pages = {793--818},
     publisher = {mathdoc},
     volume = {48},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_6_a4/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Irreducible algebraic sets over divisible decomposed rigid groups
JO  - Algebra i logika
PY  - 2009
SP  - 793
EP  - 818
VL  - 48
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_6_a4/
LA  - ru
ID  - AL_2009_48_6_a4
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Irreducible algebraic sets over divisible decomposed rigid groups
%J Algebra i logika
%D 2009
%P 793-818
%V 48
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_6_a4/
%G ru
%F AL_2009_48_6_a4
N. S. Romanovskii. Irreducible algebraic sets over divisible decomposed rigid groups. Algebra i logika, Tome 48 (2009) no. 6, pp. 793-818. http://geodesic.mathdoc.fr/item/AL_2009_48_6_a4/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[2] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[3] V. Remeslennikov, “Dimension of algebraic sets in free metabelian groups”, Fundam. Appl. Math., 7 (2000), 873–885 | MR

[4] V. Remeslennikov, R. Stöhr, “On algebraic sets over metabelian groups”, J. Group Theory, 8 (2005), 491–513 | DOI | MR | Zbl

[5] V. Remeslennikov, R. Stöhr, “On the quasivariety generated by a non-cyclic free metabelian group”, Algebra Colloq., 11 (2004), 191–214 | MR | Zbl

[6] V. N. Remeslennikov, N. S. Romanovskii, “O metabelevykh proizvedeniyakh grupp”, Algebra i logika, 43:3 (2004), 341–352 | MR | Zbl

[7] V. N. Remeslennikov, N. S. Romanovskii, “Neprivodimye algebraicheskie mnozhestva v metabelevoi gruppe”, Algebra i logika, 44:5 (2005), 601–621 | MR | Zbl

[8] N. S. Romanovskii, “Algebraicheskie mnozhestva v metabelevoi gruppe”, Algebra i logika, 46:4 (2007), 503–513 | MR | Zbl

[9] Ch. K. Gupta, N. S. Romanovskii, “Nëterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl

[10] A. Myasnikov, N. Romanovskiy, Krull dimension of solvable groups, arxiv: 0808.2932v1[math.GR]

[11] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika, 48:2 (2009), 258–279

[12] N. S. Romanovskii, “Delimye zhëstkie gruppy”, Algebra i logika, 47:6 (2008), 762–776 | MR

[13] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[14] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl

[15] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem on soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | DOI | MR | Zbl