Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2009_48_6_a1, author = {S. S. Goncharov}, title = {Autostability of prime models under strong constructivizations}, journal = {Algebra i logika}, pages = {729--740}, publisher = {mathdoc}, volume = {48}, number = {6}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2009_48_6_a1/} }
S. S. Goncharov. Autostability of prime models under strong constructivizations. Algebra i logika, Tome 48 (2009) no. 6, pp. 729-740. http://geodesic.mathdoc.fr/item/AL_2009_48_6_a1/
[1] A. Fröhlich, J. Shepherdson, “Effective procedures in field theory”, Philos. Trans. Roy. Soc. London Ser. A, 248 (1956), 407–432 | DOI | MR | Zbl
[2] A. I. Maltsev, “O rekursivnykh abelevykh gruppakh”, Dokl. AN SSSR, 146:5 (1962), 1009–1012
[3] A. I. Maltsev, “Konstruktivnye algebry. I”, Usp. matem. n., 16:3 (1961), 3–60 | MR | Zbl
[4] E. B. Fokina, “Arithmetical Turing degrees and categorical theories of computable models”, Mathematical Logic in Asia, Proc. 9th Asian Logic Conf., 2006, 58–69 | MR | Zbl
[5] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999
[6] E. B. Fokina, “O spektrakh vychislimykh modelei”, Vestnik NGU, Ser. matem., mekh., inform., 6:6 (2006), 69–73
[7] J. H. Schmerl, “A decidable $\aleph_0$-categorical theory with a non-recursive Ryll–Nardzewski function”, Fundam. Math., 98:2 (1978), 121–125 | MR | Zbl
[8] A. Gavryushkin, “On complexity of Ehrenfeucht theories with computable model”, Logical approaches to computational barriers, Second Conf. Comput. Europe, Rep. Ser., Swansea Univ., 2006, 105–108
[9] A. N. Gavryushkin, “Slozhnost erenfoikhtovykh modelei”, Algebra i logika, 45:5 (2006), 507–519 | MR | Zbl
[10] M. G. Peretyatkin, “O polnykh teoriyakh s konechnym chislom schëtnykh modelei”, Algebra i logika, 12:5 (1973), 550–576
[11] S. Goncharov, B. Khoussainov, “Open problems in the theory of constructive algebraic systems”, Computability theory and its applications. Current trends and open problems, Proc. 1999 AMS-IMS-SIAM joint summer research conf. (Boulder, CO, USA, June 13–17, 1999), Contemp. Math., 257, eds. P. A. Cholak et al., Am. Math. Soc., Providence, RI, 2000, 145–170 | MR | Zbl
[12] T. S. Millar, “Foundations of recursive model theory”, Ann. Math. Logic, 13:1 (1978), 45–72 | DOI | MR | Zbl
[13] T. Millar, “Persistently finite theories with hyperarithmetic models”, Trans. Am. Math. Soc., 278:1 (1983), 91–99 | DOI | MR | Zbl
[14] T. Millar, “Decidability and the number of countable models”, Ann. Pure Appl. Logic, 27:2 (1984), 137–153 | DOI | MR | Zbl
[15] T. Millar, “Decidable Ehrenfeucht theories”, Recursion theory, Proc. AMS-ASL Summer Inst. (Ithaca/N.Y., 1982), Proc. Symp. Pure Math., 42, 1985, 311–321 | MR | Zbl
[16] J. Knight, “Nonarithmetical $\aleph_0$-categorical theories with recursive models”, J. Symb. Log., 59:1 (1994), 106–112 | DOI | MR | Zbl
[17] R. Reed, “A decidable Ehrenfeucht theory with exactly two hyperarithmetic models”, Ann. Pure Appl. Logic, 53:2 (1991), 135–168 | DOI | MR | Zbl
[18] C. Ash, T. S. Millar, “Persistently finite, persistently arithmetic theories”, Proc. Am. Math. Soc., 89:3 (1983), 487–492 | DOI | MR | Zbl
[19] M. Lerman, J. Schmerl, “Theories with recursive models”, J. Symb. Log., 44:1 (1979), 59–76 | DOI | MR | Zbl
[20] S. Lempp, T. A. Slaman, “The complexity of the index sets of $\aleph_0$-categorical theories and of Ehrenfeucht theories”, Advances in logic, The North Texas logic conf. (Denton, TX, USA, October 8–10, 2004), Contemp. Math., 425, eds. Su Gao et al., Am. Math. Soc., Providence, RI, 2007, 43–47 | MR | Zbl
[21] M. Morley, “Decidable models”, Israel J. Math., 25 (1976), 233–240 | DOI | MR | Zbl
[22] R. L. Vaught, “Denumerable models of complete theories”, Infinistic methods, Proc. symp. found. math. (Warshaw, 1959), 1961, 303–321 | MR | Zbl
[23] S. S. Goncharov, “Silnaya konstruktiviziruemost odnorodnykh modelei”, Algebra i logika, 17:4 (1978), 363–388 | MR | Zbl
[24] M. G. Peretyatkin, “Kriterii silnoi konstruktiviziruemosti odnorodnoi modeli”, Algebra i logika, 17:4 (1978), 436–454 | MR
[25] A. N. Gavryushkin, “Spektry vychislimykh modelei erenfoikhtovykh teorii”, Algebra i logika, 46:3 (2007), 275–289 | MR | Zbl
[26] A. N. Gavryushkin, “O konstruktivnykh modelyakh teorii s lineinym poryadkom Rudina–Keislera”, Vestnik NGU, Ser. matem., mekh., inform., 9:2 (2009), 30–37
[27] A. Gavryushkin, “Computable models spectra of Ehrenfeucht theories”, Logic Colloquium 2007, Book of Abstracts, Uniw. Wroclawski, 2007, 46–47 | MR
[28] A. Gavryushkin, “Computable models spectra of Ehrenfeucht theories”, Logic and Theory of Algorithms, Fourth Conf. Comput. Europe, CiE 2008 Local Proc., Univ. Athens, 2008, 50–51
[29] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, M., 1972 | MR
[30] G. Keisler, Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR
[31] A. T. Nurtazin, “Silnye i slabye konstruktivizatsii i vychislimye semeistva”, Algebra i logika, 13:3 (1974), 311–323 | MR | Zbl
[32] E. A. Palyutin, “Ob algebrakh formul schëtno kategorichnykh teorii”, Colloq. Math., 31:2 (1974), 157–159 | Zbl