Groups saturated by finite simple groups
Algebra i logika, Tome 48 (2009) no. 5, pp. 628-653.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe periodic groups saturated by groups in the set $$ \mathfrak C=\{ L_2(r),\ r\ge4;\quad L_3(2^m),\ m\ge1;\quad U_3(2^m),\ m\ge2;\quad Sz(2^m),\ m\ge3\}. $$ As a corollary we give a description of periodic groups $G$ saturated by finite simple groups and satisfying one of the following conditions: (a) centralizers of involutions in $G$ are 2-closed; (b) $G$ contains a strongly embedded 2-local subgroup.
Keywords: group saturated by finite simple groups, periodic group.
@article{AL_2009_48_5_a4,
     author = {D. V. Lytkina},
     title = {Groups saturated by finite simple groups},
     journal = {Algebra i logika},
     pages = {628--653},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_5_a4/}
}
TY  - JOUR
AU  - D. V. Lytkina
TI  - Groups saturated by finite simple groups
JO  - Algebra i logika
PY  - 2009
SP  - 628
EP  - 653
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_5_a4/
LA  - ru
ID  - AL_2009_48_5_a4
ER  - 
%0 Journal Article
%A D. V. Lytkina
%T Groups saturated by finite simple groups
%J Algebra i logika
%D 2009
%P 628-653
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_5_a4/
%G ru
%F AL_2009_48_5_a4
D. V. Lytkina. Groups saturated by finite simple groups. Algebra i logika, Tome 48 (2009) no. 5, pp. 628-653. http://geodesic.mathdoc.fr/item/AL_2009_48_5_a4/

[1] M. Suzuki, “Finite groups in which the centralizer of any element of order 2 is 2-closed”, Ann. Math. (2), 82:1 (1965), 191–212 | DOI | MR | Zbl

[2] A. K. Shlëpkin, “O nekotorykh periodicheskikh gruppakh, nasyschennykh konechnymi prostymi podgruppami”, Matem. tr., 1:1 (1998), 129–138 | MR | Zbl

[3] M. Suzuki, “Finite groups of even order in which Sylow 2-groups are independent”, Ann. Math. (2), 80:1 (1964), 58–77 | DOI | MR | Zbl

[4] M. Aschbacher, Finite group theory, 2nd ed., Cambridge Stud. Adv. Math., 10, Cambridge Univ. Press, Cambridge etc., 2000 | MR | Zbl

[5] R. W. Carter, Simple groups of Lie type, Pure and Appl. Math., 28, J. Wiley Sons, London a.o., 1972 | MR

[6] B. Huppert, Endliche Gruppen, I. Nachdr. d. 1. Aufl., Grundlehren mathem. Wiss., 134, Springer-Verlag, Berlin etc., 1979 | MR | Zbl

[7] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493 | Zbl

[8] B. Hartley, G. Shute, “Monomorphisms and direct limits of finite groups of Lie type”, Q. J. Math. Oxf. II Ser., 35:137 (1984), 49–71 | DOI | MR | Zbl

[9] V. D. Mazurov, “O beskonechnykh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika, 39:1 (2000), 74–86 | MR | Zbl

[10] A. G. Rubashkin, “O periodicheskikh gruppakh, nasyschennykh $L_2(q)$”, Matem. sistemy, 3, Krasnoyarskii gos. agrarnyi un-t, Krasnoyarsk, 2005, 68–71

[11] D. V. Lytkina, V. D. Mazurov, “Periodicheskie gruppy, nasyschennye gruppami $L_3(2^m)$”, Algebra i logika, 46:5 (2007), 606–626 | MR | Zbl

[12] D. V. Lytkina, V. D. Mazurov, “O gruppakh, soderzhaschikh silno vlozhennuyu podgruppu”, Algebra i logika, 48:2 (2009), 190–202

[13] D. V. Lytkina, L. R. Tukhvatullina, K. A. Filippov, “Periodicheskie gruppy, nasyschennye konechnymi prostymi gruppami $U_3(2^m)$”, Algebra i logika, 47:3 (2008), 288–306 | MR | Zbl

[14] H. Bender, “Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festläßt”, J. Algebra, 17:4 (1971), 527–554 | DOI | MR | Zbl