Abelian groups with normal endomorphism rings
Algebra i logika, Tome 48 (2009) no. 4, pp. 520-539.

Voir la notice de l'article provenant de la source Math-Net.Ru

A ring is said to be normal if all of its idempotents are central. It is proved that a mixed group $A$ with a normal endomorphism ring contains a pure fully invariant subgroup $G\oplus B$, the endomorphism ring of a group $G$ is commutative, and a subgroup $B$ is not always distinguished by a direct summand in $A$. We describe separable, coperiodic, and other groups with normal endomorphism rings. Also we consider Abelian groups in which the square of the Lie bracket of any two endomorphisms is the zero endomorphism. It is proved that every central invariant subgroup of a group is fully invariant iff the endomorphism ring of the group is commutative.
Keywords: fully invariant subgroup, central invariant subgroup, normal endomorphism ring, invariant endomorphism ring, Lie bracket of endomorphisms.
@article{AL_2009_48_4_a4,
     author = {A. R. Chekhlov},
     title = {Abelian groups with normal endomorphism rings},
     journal = {Algebra i logika},
     pages = {520--539},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_4_a4/}
}
TY  - JOUR
AU  - A. R. Chekhlov
TI  - Abelian groups with normal endomorphism rings
JO  - Algebra i logika
PY  - 2009
SP  - 520
EP  - 539
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_4_a4/
LA  - ru
ID  - AL_2009_48_4_a4
ER  - 
%0 Journal Article
%A A. R. Chekhlov
%T Abelian groups with normal endomorphism rings
%J Algebra i logika
%D 2009
%P 520-539
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_4_a4/
%G ru
%F AL_2009_48_4_a4
A. R. Chekhlov. Abelian groups with normal endomorphism rings. Algebra i logika, Tome 48 (2009) no. 4, pp. 520-539. http://geodesic.mathdoc.fr/item/AL_2009_48_4_a4/

[1] G. E. Puninskii, A. A. Tuganbaev, Koltsa i moduli, Soyuz, M., 1998 | MR

[2] P. A. Krylov, A. V. Mikhalev, A. A. Tuganbaev, Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006

[3] T. Szele, J. Szendrei, “On Abelian groups with commutative endomorphism ring”, Acta Math. Acad. Sci. Hung., 2 (1951), 309–324 | DOI | MR | Zbl

[4] L. Fuks, Beskonechnye abelevy gruppy, t. 1, Mir, M., 1974; т. 2, 1977

[5] D. A. Lawver, “Abelian groups in which endomorphic images are fully invariant”, J. Algebra, 29 (1974), 232–245 | DOI | MR | Zbl

[6] D. A. Lawver, “On the commutativity and generalized regularity of $\mathcal E(G)$”, Acta Math. Acad. Sci. Hung., 24 (1973), 107–112 | DOI | MR | Zbl

[7] J. D. Reid, “On subcommutative rings”, Acta Math. Acad. Sci. Hung., 16 (1965), 23–26 | DOI | MR | Zbl

[8] A. Orsatti, “Su di un problema di T. Szele, e J. Szendrei”, Rend. Sem. Mat. Univ. Padova, 35 (1965), 171–175 | MR | Zbl

[9] D. M. Arnold, Finite rank torsion-free Abelian groups and rings, Lect. Notes Math., 931, Springer-Verlag, Berlin–Heidelberg–New York, 1982 | MR | Zbl

[10] P. Schultz, “On a paper of Szele and Szendrei on groups with commutative endomorphism rings”, Acta Math. Acad. Sci. Hung., 24 (1973), 59–63 | DOI | MR | Zbl

[11] S. F. Kozhukhov, “Abelevy gruppy bez nilpotentnykh endomorfizmov”, Abelevy gruppy i moduli, Tomsk, 1979, 87–94

[12] A. G. Kurosh, Lektsii po obschei algebre, Nauka, M., 1973