Structure of coordinate groups for algebraic sets in partially commutative nilpotent groups
Algebra i logika, Tome 48 (2009) no. 3, pp. 378-399.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results obtained deal in algebraic geometry over partially commutative class two nilpotent $\mathbb Q$-groups, where $\mathbb Q$ is a field of rationals. It is proved that two arbitrary non-Abelian partially commutative class two nilpotent $\mathbb Q$-groups are geometrically equivalent. A necessary and sufficient condition of being universally geometrically equivalent is specified for two partially commutative class two nilpotent $\mathbb Q$-groups. Algebraic sets for systems of equations in one variable, as well as for some special systems in several variables, are described.
Keywords: partially commutative class two nilpotent $\mathbb Q$-group, geometric equivalence, algebraic set.
@article{AL_2009_48_3_a3,
     author = {A. A. Mishchenko},
     title = {Structure of coordinate groups for algebraic sets in partially commutative nilpotent groups},
     journal = {Algebra i logika},
     pages = {378--399},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_3_a3/}
}
TY  - JOUR
AU  - A. A. Mishchenko
TI  - Structure of coordinate groups for algebraic sets in partially commutative nilpotent groups
JO  - Algebra i logika
PY  - 2009
SP  - 378
EP  - 399
VL  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_3_a3/
LA  - ru
ID  - AL_2009_48_3_a3
ER  - 
%0 Journal Article
%A A. A. Mishchenko
%T Structure of coordinate groups for algebraic sets in partially commutative nilpotent groups
%J Algebra i logika
%D 2009
%P 378-399
%V 48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_3_a3/
%G ru
%F AL_2009_48_3_a3
A. A. Mishchenko. Structure of coordinate groups for algebraic sets in partially commutative nilpotent groups. Algebra i logika, Tome 48 (2009) no. 3, pp. 378-399. http://geodesic.mathdoc.fr/item/AL_2009_48_3_a3/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I. Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Aspects of infinite groups. A Festschrift in honor of A. Gaglione, Papers of the conf. in honour of A. Gaglione's 60th birthday (Fairfield, USA, March 2007), Algebra Discr. Math. (Hackensack), 1, eds. B. Fine et al., World Sci., Hackensack, NJ, 2008, 80–111 | Zbl

[3] A. A. Mischenko, A. V. Treier, “Grafy kommutativnosti dlya chastichno kommutativnykh dvustupenno nilpotentnykh $Q$-grupp”, Sib. elektron. matem. izv., 4 (2007), 460–481 ; http://semr.math.nsc.ru/v4/p460-481.pdf | MR

[4] E. Esyp, I. Kazachkov, V. Remeslennikov, “Divisibility theory and complexity of algorithms for free partially commutative groups”, Groups, languages, algorithms, Proc. the AMS-ASL joint special session on interactions between logic, group theory, and computer science (Baltimore, MD, USA, January 16–19, 2003), Contemp. Math., 378, ed. A. V. Borovik, Am. Math. Soc., Providence, RI, 2005, 319–348 | MR | Zbl

[5] F. Kholl, “Nilpotentnye gruppy”, Matematika. Sb. perevodov, 12:1 (1968), 3–36 | MR

[6] E. Yu. Daniyarova, “Osnovy algebraicheskoi geometrii nad algebrami Li”, Vestnik Omskogo un-ta, Spets. vypusk (2007), 8–40

[7] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II. Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl

[8] A. A. Mischenko, “Universalnaya ekvivalentnost chastichno kommutativnykh dvustupenno nilpotentnykh $Q$-grupp”, Vestnik Omskogo un-ta, Spets. vypusk (2008), 61–68