Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2009_48_2_a5, author = {N. S. Romanovskii}, title = {Equational {Noetherianness} of rigid soluble groups}, journal = {Algebra i logika}, pages = {258--279}, publisher = {mathdoc}, volume = {48}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2009_48_2_a5/} }
N. S. Romanovskii. Equational Noetherianness of rigid soluble groups. Algebra i logika, Tome 48 (2009) no. 2, pp. 258-279. http://geodesic.mathdoc.fr/item/AL_2009_48_2_a5/
[1] A. Myasnikov, N. Romanovskiy, Krull dimension of solvable groups, arXiv: 0808.2932v1[math.GR]
[2] Ch. K. Gupta, N. S. Romanovskii, “Neterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl
[3] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR
[4] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl
[5] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem on soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | DOI | MR | Zbl
[6] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl
[7] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II: Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl