Equational Noetherianness of rigid soluble groups
Algebra i logika, Tome 48 (2009) no. 2, pp. 258-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

A group $G$ is said to be rigid if it contains a normal series of the form $$ G=G_1>G_2>\dots>G_m>G_{m+1}=1, $$ whose quotients $G_i/G_{i+1}$ are Abelian and are torsion free as right $Z[G/G_i]$-modules. In studying properties of such groups, it was shown, in particular, that the above series is defined by the group uniquely. It is known that finitely generated rigid groups are equationally Noetherian: i.e., for any $n$, every system of equations in $x_1,\dots,x_n$ over a given group is equivalent to some of its finite subsystems. This fact is equivalent to the Zariski topology being Noetherian on $G^n$, which allowed the dimension theory in algebraic geometry over finitely generated rigid groups to have been constructed. It is proved that every rigid group is equationally Noetherian.
Mots-clés : rigid group
Keywords: equational Noetherianness.
@article{AL_2009_48_2_a5,
     author = {N. S. Romanovskii},
     title = {Equational {Noetherianness} of rigid soluble groups},
     journal = {Algebra i logika},
     pages = {258--279},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_2_a5/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Equational Noetherianness of rigid soluble groups
JO  - Algebra i logika
PY  - 2009
SP  - 258
EP  - 279
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_2_a5/
LA  - ru
ID  - AL_2009_48_2_a5
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Equational Noetherianness of rigid soluble groups
%J Algebra i logika
%D 2009
%P 258-279
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_2_a5/
%G ru
%F AL_2009_48_2_a5
N. S. Romanovskii. Equational Noetherianness of rigid soluble groups. Algebra i logika, Tome 48 (2009) no. 2, pp. 258-279. http://geodesic.mathdoc.fr/item/AL_2009_48_2_a5/

[1] A. Myasnikov, N. Romanovskiy, Krull dimension of solvable groups, arXiv: 0808.2932v1[math.GR]

[2] Ch. K. Gupta, N. S. Romanovskii, “Neterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl

[3] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[4] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl

[5] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem on soluble group rings”, Proc. Am. Math. Soc., 104:3 (1988), 675–684 | DOI | MR | Zbl

[6] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. I: Algebraic sets and ideal theory”, J. Algebra, 219:1 (1999), 16–79 | DOI | MR | Zbl

[7] A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups. II: Logical foundations”, J. Algebra, 234:1 (2000), 225–276 | DOI | MR | Zbl