$k$-Free-like groups
Algebra i logika, Tome 48 (2009) no. 2, pp. 245-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following results are proved. In Theorem 1, it is stated that there exist both finitely presented and not finitely presented 2-generated nonfree groups which are $k$-free-like for any $k\ge2$. In Theorem 2, it is claimed that every nonvirtually cyclic (resp., noncyclic and torsion-free) hyperbolic $m$-generated group is $k$-free-like for every $k\ge m+1$ (resp., $k\ge m$). Finally, Theorem 3 asserts that there exists a 2-generated periodic group $G$ which is $k$-free-like for every $k\ge3$.
Keywords: $k$-free-like groups.
@article{AL_2009_48_2_a4,
     author = {A. Yu. Olshanskii and M. V. Sapir},
     title = {$k${-Free-like} groups},
     journal = {Algebra i logika},
     pages = {245--257},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_2_a4/}
}
TY  - JOUR
AU  - A. Yu. Olshanskii
AU  - M. V. Sapir
TI  - $k$-Free-like groups
JO  - Algebra i logika
PY  - 2009
SP  - 245
EP  - 257
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_2_a4/
LA  - ru
ID  - AL_2009_48_2_a4
ER  - 
%0 Journal Article
%A A. Yu. Olshanskii
%A M. V. Sapir
%T $k$-Free-like groups
%J Algebra i logika
%D 2009
%P 245-257
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_2_a4/
%G ru
%F AL_2009_48_2_a4
A. Yu. Olshanskii; M. V. Sapir. $k$-Free-like groups. Algebra i logika, Tome 48 (2009) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/AL_2009_48_2_a4/

[1] A. Akhmedov, “The girth of groups satisfying Tits alternative”, J. Algebra, 287:2 (2005), 275–282 | DOI | MR | Zbl

[2] G. N. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, “Uniform non-amenability”, Adv. Math., 197:2 (2005), 499–522 | DOI | MR | Zbl

[3] M. Gromov, “Hyperbolic groups”, Essays in group theory, Publ. math. sci. res. inst., 8, ed. S. M. Gersten, 1987, 75–263 | MR | Zbl

[4] A. Yu. Ol'shanskij, “On residualing homomorphisms and $G$-subgroups of hyperbolic groups”, Int. J. Algebra Comput., 3:4 (1993), 365–409 | DOI | MR

[5] S. Schleimer, On the girth of groups, preprint

[6] A. Akhmedov, “On the girth of finitely generated groups”, J. Algebra, 268:1 (2003), 198–208 | DOI | MR | Zbl

[7] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[8] I. Benjamini, A. Nachmias, Y. Peres, Is the critical percolation probability local?, Eprint , 2008 arXiv: 0901.4616

[9] I. Benjamini, O. Schramm, “Percolation beyond $\mathbf Z^d$, many questions and a few answers”, Electron. Commun. Probab., 1:8 (1996), 71–82 | MR | Zbl

[10] R. Lyons, Y. Peres, Probability on trees and networks, Cambridge Univ. Press, Cambridge (to appear)

[11] I. Kozakova, Critical percolation on Cayley graphs of groups acting on trees, Eprint , 2008 arXiv: 0801.4153 | MR | Zbl

[12] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[13] D. V. Osin, “Uniform non-amenability of free Burnside groups”, Arch. Math., 88:5 (2007), 403–412 | DOI | MR | Zbl

[14] D. Osin, Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Am. Math. Soc., 179, No 843, Am. Math. Soc., Providence, RI, 2006 | MR

[15] D. Osin, “Peripheral fillings of relatively hyperbolic groups”, Invent. Math., 167:2 (2007), 295–326 | DOI | MR | Zbl

[16] A. Yu. Olshanskii, D. V. Osin, M. V. Sapir, Lacunary hyperbolic groups, Eprint , 2007 arXiv: math/0701365

[17] E. Breuillard, T. Gelander, “Uniform independence in linear groups”, Invent. Math., 173:2 (2008), 225–263 | DOI | MR | Zbl