Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2009_48_2_a4, author = {A. Yu. Olshanskii and M. V. Sapir}, title = {$k${-Free-like} groups}, journal = {Algebra i logika}, pages = {245--257}, publisher = {mathdoc}, volume = {48}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2009_48_2_a4/} }
A. Yu. Olshanskii; M. V. Sapir. $k$-Free-like groups. Algebra i logika, Tome 48 (2009) no. 2, pp. 245-257. http://geodesic.mathdoc.fr/item/AL_2009_48_2_a4/
[1] A. Akhmedov, “The girth of groups satisfying Tits alternative”, J. Algebra, 287:2 (2005), 275–282 | DOI | MR | Zbl
[2] G. N. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, “Uniform non-amenability”, Adv. Math., 197:2 (2005), 499–522 | DOI | MR | Zbl
[3] M. Gromov, “Hyperbolic groups”, Essays in group theory, Publ. math. sci. res. inst., 8, ed. S. M. Gersten, 1987, 75–263 | MR | Zbl
[4] A. Yu. Ol'shanskij, “On residualing homomorphisms and $G$-subgroups of hyperbolic groups”, Int. J. Algebra Comput., 3:4 (1993), 365–409 | DOI | MR
[5] S. Schleimer, On the girth of groups, preprint
[6] A. Akhmedov, “On the girth of finitely generated groups”, J. Algebra, 268:1 (2003), 198–208 | DOI | MR | Zbl
[7] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR
[8] I. Benjamini, A. Nachmias, Y. Peres, Is the critical percolation probability local?, Eprint , 2008 arXiv: 0901.4616
[9] I. Benjamini, O. Schramm, “Percolation beyond $\mathbf Z^d$, many questions and a few answers”, Electron. Commun. Probab., 1:8 (1996), 71–82 | MR | Zbl
[10] R. Lyons, Y. Peres, Probability on trees and networks, Cambridge Univ. Press, Cambridge (to appear)
[11] I. Kozakova, Critical percolation on Cayley graphs of groups acting on trees, Eprint , 2008 arXiv: 0801.4153 | MR | Zbl
[12] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR
[13] D. V. Osin, “Uniform non-amenability of free Burnside groups”, Arch. Math., 88:5 (2007), 403–412 | DOI | MR | Zbl
[14] D. Osin, Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Am. Math. Soc., 179, No 843, Am. Math. Soc., Providence, RI, 2006 | MR
[15] D. Osin, “Peripheral fillings of relatively hyperbolic groups”, Invent. Math., 167:2 (2007), 295–326 | DOI | MR | Zbl
[16] A. Yu. Olshanskii, D. V. Osin, M. V. Sapir, Lacunary hyperbolic groups, Eprint , 2007 arXiv: math/0701365
[17] E. Breuillard, T. Gelander, “Uniform independence in linear groups”, Invent. Math., 173:2 (2008), 225–263 | DOI | MR | Zbl