Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2009_48_2_a3, author = {A. G. Miasnikov and M. Sohrabi}, title = {Groups elementarily equivalent to a~free 2-nilpotent group of finite rank}, journal = {Algebra i logika}, pages = {203--244}, publisher = {mathdoc}, volume = {48}, number = {2}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2009_48_2_a3/} }
A. G. Miasnikov; M. Sohrabi. Groups elementarily equivalent to a~free 2-nilpotent group of finite rank. Algebra i logika, Tome 48 (2009) no. 2, pp. 203-244. http://geodesic.mathdoc.fr/item/AL_2009_48_2_a3/
[1] A. Tarski, A decision method for elementary algebra and geometry, 2nd ed., Univ. Calif. Press, Berkeley, 1951 | MR | Zbl
[2] J. Ax, S. Kochen, “Diophantine problems over local fields. I”, Am. J. Math., 87 (1965), 605–630 | DOI | MR | Zbl
[3] J. Ax, S. Kochen, “Diophantine problems over local fields. II: A complete set of axioms for $p$-adic number theory”, Am. J. Math., 87 (1965), 631–648 | DOI | MR | Zbl
[4] J. Ax, S. Kochen, “Diophantine problems over local fields. III: Decidable fields”, Ann. Math. (2), 83 (1966), 437–456 | DOI | MR | Zbl
[5] Yu. L. Ershov, “Ob elementarnykh teoriyakh lokalnykh polei”, Algebra i logika, 4:2 (1965), 5–30 | MR | Zbl
[6] Yu. L. Ershov, “Ob elementarnoi teorii maksimalnykh normirovannykh polei”, Algebra i logika, 4:3 (1965), 31–70 | MR | Zbl
[7] Yu. L. Ershov, “Ob elementarnoi teorii maksimalnykh normirovannykh polei. II”, Algebra i logika, 5:1 (1966), 5–40 | MR | Zbl
[8] W. Szmielew, “Elementary properties of abelian groups”, Fundam. Math., 41 (1955), 203–271 | MR | Zbl
[9] P. C. Eklof, R. F. Fischer, “The elementary theory of abelian groups”, Ann. Math. Logic, 4:2 (1972), 115–171 | DOI | MR | Zbl
[10] L. Monk, Elementary-recursive decision procedures, Ph. D. thesis, Univ. Calif., Berkeley, 1975
[11] W. Baur, “Elimination of quantifiers for modules”, Isr. J. Math., 25 (1976), 64–70 | DOI | MR | Zbl
[12] O. Kharlampovich, A. Myasnikov, “Elementary theory of free non-abelian groups”, J. Algebra, 302:2 (2006), 451–552 | DOI | MR | Zbl
[13] Z. Sela, “Diophantine geometry over groups. VI: The elementary theory of a free group”, Geom. Funct. Anal., 16:3 (2006), 707–730 | MR | Zbl
[14] A. I. Maltsev, “O svobodnykh razreshimykh gruppakh”, Dokl. AN SSSR, 130:3 (1960), 495–498
[15] A. I. Maltsev, “Ob elementarnykh svoistvakh lineinykh grupp”, Nekotorye problemy matematiki i mekhaniki, Sib. otd-e AN SSSR, Novosibirsk, 1961, 110–132
[16] V. N. Remeslennikov, V. A. Romankov, “Teoretiko-modelnye i algoritmicheskie voprosy teorii grupp”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom., 21, VINITI, M., 1983 | MR | Zbl
[17] E. I. Bunina, A. V. Mikhalev, “Elementary properties of linear groups and related problems”, J. Math. Sci. (New York), 123:2 (2004), 3921–3985 | DOI | MR | Zbl
[18] E. I. Bunina, A. V. Mikhalev, “Combinatorial and logical aspects of linear groups and Chevalley groups”, Acta Appl. Math., 85:1–3 (2005), 57–74 | DOI | MR | Zbl
[19] B. I. Zilber, “Some model theory of simple algebraic groups over algebraically closed fields”, Colloq. Math., 48:2 (1984), 173–180 | MR | Zbl
[20] B. Poizat, “MM. Borel, Tits, Zil'fber et le général nonsense”, J. Symb. Log., 53:1 (1988), 124–131 | DOI | MR | Zbl
[21] B. Poizat, Stable groups, Math. Surveys Monogr., 87, Am. Math. Soc., Providence, RI, 2001 | MR | Zbl
[22] A. I. Maltsev, “Ob odnom sootvetstvii mezhdu koltsami i gruppami”, Matem. cb., 50(92):3 (1960), 257–266 | MR | Zbl
[23] Yu. L. Ershov, “Ob elementarnykh teoriyakh grupp”, Dokl. AN SSSR, 203:6 (1972), 1240–1243 | MR | Zbl
[24] B. I. Zilber, “Primer dvukh elementarno ekvivalentnykh, no ne izomorfnykh konechno porozhdennykh metabelevykh grupp”, Algebra i logika, 10:3 (1971), 309–315 | MR
[25] A. G. Myasnikov, V. N. Remeslennikov, “Klassifikatsiya konechnoporozhdennykh nilpotentnykh grupp po elementarnym svoistvam”, Matematicheskaya logika i teoriya algoritmov, Tr. In-ta matem. SO AN SSSR, 2, Nauka, Novosibirsk, 1981, 56–87 | MR
[26] A. G. Myasnikov, V. N. Remeslennikov, “Formulnost mnozhestva maltsevskikh baz i elementarnye svoistva konechnomernykh algebr. I”, Sib. matem. zh., 23:5 (1982), 152–167 | MR | Zbl
[27] A. G. Myasnikov, V. N. Remeslennikov, “Formulnost mnozhestva maltsevskikh baz i elementarnye svoistva konechnomernykh algebr. II”, Sib. matem. zh., 24:2 (1983), 97–113 | MR | Zbl
[28] A. G. Myasnikov, “Elementarnye teorii i abstraktnye izomorfizmy konechnomernykh algebr i unipotentnykh grupp”, Dokl. Ak. nauk SSSR, 297:2 (1987), 290–293 | MR
[29] A. G. Myasnikov, “Stroenie modelei i kriterii razreshimosti polnykh teorii konechnomernykh algebr”, Izv. Ak. nauk SSSR Ser. Matem., 53:2 (1989), 379–397 | MR | Zbl
[30] F. Oger, “Cancellation and elementary equivalence of finitely generated finite-by-nilpotent groups”, J. Lond. Math. Soc. II Ser., 44:1 (1991), 173–183 | DOI | MR
[31] O. V. Belegradek, “The Mal'cev correspondence revisited”, Algebra, Proc. int. conf. memory A. I. Mal'cev, Part 1 (Novosibirsk, USSR, 1989), Contemp. Math., 131, 1992, 37–59 | MR | Zbl
[32] O. V. Belegradek, “The model theory of unitriangular groups”, Ann. Pure Appl. Logic, 68:3 (1994), 225–261 | DOI | MR | Zbl
[33] O. V. Belegradek, “Model theory of unitriangular groups”, Model theory and applications, Am. Math. Soc. Transl. Ser. 2, 195, Am. Math. Soc., Providence, RI, 1999, 1–116 | MR | Zbl
[34] A. G. Myasnikov, “Opredelimye invarianty bilineinykh otobrazhenii”, Sib. matem. zh., 31:1 (1990), 104–115 | MR | Zbl
[35] A. G. Myasnikov, “Teoriya modelei bilineinykh otobrazhenii”, Sib. matem. zh., 31:3 (1990), 94–108 | MR | Zbl
[36] P. Hall, Nilpotent groups, Notes of lectures given at the Can. Math. Congr., summer seminar, (Univ. Alberts, 12–30 August, 1957), Queen Mary College Math. Notes, Queen Mary College (Univ. London), London, 1969 | MR | Zbl
[37] D. J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts Math., 80, Springer-Verlag, New York, 1995 | Zbl
[38] W. Hodges, Model theory, Encycl. Math. Appl., 42, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[39] F. Grunewald, D. Segal, “Reflections on the classification of torsion-free nilpotent groups”, Group theory, Essays for Philip Hall, Academic Press Inc. Ltd., London, 1984, 121–158 | MR