The twisted conjugacy problem for endomorphisms of metabelian groups
Algebra i logika, Tome 48 (2009) no. 2, pp. 157-173.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be a finitely generated metabelian group explicitly presented in a variety $\mathcal A^2$ of all metabelian groups. An algorithm is constructed which, for every endomorphism $\varphi\in\operatorname{End}(M)$ identical modulo an Abelian normal subgroup $N$ containing the derived subgroup $M'$ and for any pair of elements $u,v\in M$, decides if an equation of the form $(x\varphi)u=vx$ has a solution in $M$. Thus, it is shown that the title problem under the assumptions made is algorithmically decidable. Moreover, the twisted conjugacy problem in any polycyclic metabelian group $M$ is decidable for an arbitrary endomorphism $\varphi\in\operatorname{End}(M)$.
Keywords: metabelian group, twisted conjugacy, fixed points, Fox derivatives.
Mots-clés : endomorphism
@article{AL_2009_48_2_a0,
     author = {E. Ventura and V. A. Roman'kov},
     title = {The twisted conjugacy problem for endomorphisms of metabelian groups},
     journal = {Algebra i logika},
     pages = {157--173},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2009_48_2_a0/}
}
TY  - JOUR
AU  - E. Ventura
AU  - V. A. Roman'kov
TI  - The twisted conjugacy problem for endomorphisms of metabelian groups
JO  - Algebra i logika
PY  - 2009
SP  - 157
EP  - 173
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2009_48_2_a0/
LA  - ru
ID  - AL_2009_48_2_a0
ER  - 
%0 Journal Article
%A E. Ventura
%A V. A. Roman'kov
%T The twisted conjugacy problem for endomorphisms of metabelian groups
%J Algebra i logika
%D 2009
%P 157-173
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2009_48_2_a0/
%G ru
%F AL_2009_48_2_a0
E. Ventura; V. A. Roman'kov. The twisted conjugacy problem for endomorphisms of metabelian groups. Algebra i logika, Tome 48 (2009) no. 2, pp. 157-173. http://geodesic.mathdoc.fr/item/AL_2009_48_2_a0/

[1] P. Hall, “Finiteness conditions for soluble groups”, Proc. Lond. Math. Soc. III Ser., 4 (1954), 419–436 | DOI | MR | Zbl

[2] P. Hall, “On the finiteness of certain soluble groups”, Proc. Lond. Math. Soc. III Ser., 9 (1959), 595–622 | DOI | MR | Zbl

[3] G. Baumslag, F. B. Cannonito, D. J. S. Robinson, “The algorithmic theory of finitely generated metabelian groups”, Trans. Am. Math. Soc., 344:2 (1994), 629–648 | DOI | MR | Zbl

[4] V. N. Remeslennikov, V. A. Romankov, “Teoretiko-modelnye i algoritmicheskie voprosy teorii grupp”, Itogi nauki i tekhn. Ser. Algebra. Topol. Geom. Fundam. napravl., 21, VINITI, M., 1983, 3–79 | MR

[5] G. A. Noskov, “O sopryazhënnosti v metabelevykh gruppakh”, Matem. zam., 31:4 (1982), 495–507 | MR | Zbl

[6] V. Schpilrain, A. Ushakov, An authentication scheme based on the twisted conjugacy problem, , 2008 arXiv: 0805.2701v1[math.GR]

[7] V. Roman'kov, E. Ventura, “On the twisted conjugacy problem for endomorphisms of nilpotent groups” (to appear)

[8] V. Roman'kov, E. Ventura, “The twisted conjugacy problem for endomorphisms of polycyclic groups” (to appear)

[9] A. Fel'shyn, E. Troitsky, Twisted conjugacy separable groups, , 2006 arXiv: math.GR/0606764v2

[10] V. N. Remeslennikov, “Sopryazhënnost v politsiklicheskikh gruppakh”, Algebra i logika, 8:6 (1969), 712–725 | MR | Zbl

[11] E. Formanek, “Conjugate separability in polycyclic groups”, J. Algebra, 42 (1976), 1–10 | DOI | MR | Zbl

[12] O. G. Kharlampovich, “Konechno opredelënnaya razreshimaya gruppa s nerazreshimoi problemoi ravenstva”, Izv. AN SSSR Ser. matem., 45:4 (1981), 852–873 | MR | Zbl

[13] L. Fuks, Beskonechnye abelevy gruppy, T. I, II, Mir, M., 1973

[14] A. Seidenberg, “Constructions in a polynomial ring over the ring of integers”, Am. J. Math., 100 (1978), 685–706 | DOI | MR | Zbl

[15] R. H. Fox, “Free differential calculus. I: Derivation in the free group ring”, Ann. Math. (2), 57 (1953), 547–560 | DOI | MR | Zbl

[16] R. H. Fox, “Free differential calculus. II: The isomorphism problem of groups”, Ann. Math. (2), 59 (1954), 196–210 | DOI | MR | Zbl

[17] R. H. Fox, “Free differential calculus. III: Subgroups”, Ann. Math. (2), 64 (1956), 407–419 | DOI | MR | Zbl

[18] R. H. Fox, “Free differential calculus. V: The Alexander matrices reexamined”, Ann. Math. (2), 71 (1960), 408–422 | DOI | MR | Zbl

[19] N. Gupta, Free Group Rings, Contemp. Math., 66, Am. Math. Soc., Providence, RI, 1987 | MR | Zbl