Divisible rigid groups
Algebra i logika, Tome 47 (2008) no. 6, pp. 762-776.

Voir la notice de l'article provenant de la source Math-Net.Ru

A soluble group $G$ is rigid if it contains a normal series of the form $$ G=G_1>G_2>\cdots>G_p>G_{p+1}=1, $$ whose quotients $G_i/G_{i+1}$ are Abelian and are torsion-free as right $\mathbb Z[G/G_i]$-modules. The concept of a rigid group appeared in studying algebraic geometry over groups that are close to free soluble. In the class of all rigid groups, we distinguish divisible groups the elements of whose quotients $G_i/G_{i+1}$ are divisible by any elements of respective groups rings $Z[G/G_i]$. It is reasonable to suppose that algebraic geometry over divisible rigid groups is rather well structured. Abstract properties of such groups are investigated. It is proved that in every divisible rigid group $H$ that contains $G$ as a subgroup, there is a minimal divisible subgroup including $G$, which we call a divisible closure of $G$ in $H$. Among divisible closures of $G$ are divisible completions of $G$ that are distinguished by some natural condition. It is shown that a divisible completion is defined uniquely up to $G$-isomorphism.
Mots-clés : rigid group, divisible group.
@article{AL_2008_47_6_a5,
     author = {N. S. Romanovskii},
     title = {Divisible rigid groups},
     journal = {Algebra i logika},
     pages = {762--776},
     publisher = {mathdoc},
     volume = {47},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_6_a5/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Divisible rigid groups
JO  - Algebra i logika
PY  - 2008
SP  - 762
EP  - 776
VL  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_6_a5/
LA  - ru
ID  - AL_2008_47_6_a5
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Divisible rigid groups
%J Algebra i logika
%D 2008
%P 762-776
%V 47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_6_a5/
%G ru
%F AL_2008_47_6_a5
N. S. Romanovskii. Divisible rigid groups. Algebra i logika, Tome 47 (2008) no. 6, pp. 762-776. http://geodesic.mathdoc.fr/item/AL_2008_47_6_a5/

[1] A. Myasnikov, N. Romanovskiy, Krull dimension of solvable groups, arXiv: 0808.2932v1[math.GR]

[2] N. S. Romanovskii, “Nëterovost po uravneniyam zhëstkikh razreshimykh grupp”, Algebra i logika (to appear)

[3] Ch. K. Gupta, N. S. Romanovskii, “Nëterovost po uravneniyam nekotorykh razreshimykh grupp”, Algebra i logika, 46:1 (2007), 46–59 | MR | Zbl

[4] I. Kherstein, Nekommutativnye koltsa, Mir, M., 1972 | MR

[5] I. Lewin, “A note on zero divisors in group-rings”, Proc. Am. Math. Soc., 31:2 (1972), 357–359 | DOI | MR | Zbl

[6] P. H. Kropholler, P. A. Linnell, J. A. Moody, “Applications of a new $K$-theoretic theorem on soluble group rings”, Proc. Amer. Math. Soc., 104:3 (1988), 675–684 | DOI | MR | Zbl