Special polynomials in free framed Lie algebra
Algebra i logika, Tome 47 (2008) no. 5, pp. 571-583.

Voir la notice de l'article provenant de la source Math-Net.Ru

A framed Lie algebra is an algebra with two operations which is a Lie algebra with respect to one of these operations. A basic example is a Lie algebra of vector fields on a manifold with connection where the covariant derivative serves as an additional operation. In a free framed Lie algebra, we distinguish a set of special polynomials that geometrically correspond to invariantly defined tensors. A necessary condition of being special is derived, and we presume that this condition is also sufficient.
Keywords: nonassociative algebra, Lie algebra, affine connection.
@article{AL_2008_47_5_a3,
     author = {A. V. Gavrilov},
     title = {Special polynomials in free framed {Lie} algebra},
     journal = {Algebra i logika},
     pages = {571--583},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a3/}
}
TY  - JOUR
AU  - A. V. Gavrilov
TI  - Special polynomials in free framed Lie algebra
JO  - Algebra i logika
PY  - 2008
SP  - 571
EP  - 583
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_5_a3/
LA  - ru
ID  - AL_2008_47_5_a3
ER  - 
%0 Journal Article
%A A. V. Gavrilov
%T Special polynomials in free framed Lie algebra
%J Algebra i logika
%D 2008
%P 571-583
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_5_a3/
%G ru
%F AL_2008_47_5_a3
A. V. Gavrilov. Special polynomials in free framed Lie algebra. Algebra i logika, Tome 47 (2008) no. 5, pp. 571-583. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a3/

[1] A. V. Gavrilov, “Algebraicheskie svoistva kovariantnogo differentsirovaniya i kompozitsiya eksponentsialnykh otobrazhenii”, Matem. tr., 9:1 (2006), 3–20 | MR

[2] K. Nomidzu, Gruppy Li i differentsialnaya geometriya, IL, M., 1960

[3] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl

[4] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. I, Interscience Publ., a division of John Wiley Sons, New York a. o., 1963 ; Foundations of differential geometry, vol. II, 1969 | MR | Zbl