Special polynomials in free framed Lie algebra
Algebra i logika, Tome 47 (2008) no. 5, pp. 571-583
Cet article a éte moissonné depuis la source Math-Net.Ru
A framed Lie algebra is an algebra with two operations which is a Lie algebra with respect to one of these operations. A basic example is a Lie algebra of vector fields on a manifold with connection where the covariant derivative serves as an additional operation. In a free framed Lie algebra, we distinguish a set of special polynomials that geometrically correspond to invariantly defined tensors. A necessary condition of being special is derived, and we presume that this condition is also sufficient.
Keywords:
nonassociative algebra, Lie algebra, affine connection.
@article{AL_2008_47_5_a3,
author = {A. V. Gavrilov},
title = {Special polynomials in free framed {Lie} algebra},
journal = {Algebra i logika},
pages = {571--583},
year = {2008},
volume = {47},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a3/}
}
A. V. Gavrilov. Special polynomials in free framed Lie algebra. Algebra i logika, Tome 47 (2008) no. 5, pp. 571-583. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a3/
[1] A. V. Gavrilov, “Algebraicheskie svoistva kovariantnogo differentsirovaniya i kompozitsiya eksponentsialnykh otobrazhenii”, Matem. tr., 9:1 (2006), 3–20 | MR
[2] K. Nomidzu, Gruppy Li i differentsialnaya geometriya, IL, M., 1960
[3] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | Zbl
[4] Sh. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. I, Interscience Publ., a division of John Wiley Sons, New York a. o., 1963 ; Foundations of differential geometry, vol. II, 1969 | MR | Zbl