Dominions of universal algebras and projective properties
Algebra i logika, Tome 47 (2008) no. 5, pp. 541-557

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a universal algebra and $H$ its subalgebra. The dominion of $H$ in $A$ (in a class $\mathcal M$) is the set of all elements $a\in A$ such that every pair of homomorphisms $f,g\colon A\to M\in\mathcal M$ satisfies the following: if $f$ and $g$ coincide on $H$, then $f(a)=g(a)$. A dominion is a closure operator on a set of subalgebras of a given algebra. The present account treats of closed subalgebras, i.e., those subalgebras $H$ whose dominions coincide with $H$. We introduce projective properties of quasivarieties which are similar to the projective Beth properties dealt with in nonclassical logics, and provide a characterization of closed algebras in the language of the new properties. It is also proved that in every quasivariety of torsion-free nilpotent groups of class at most 2, a divisible Abelian subgroup $H$ is closed in each group $\langle H,a\rangle$ generated by one element modulo $H$.
Keywords: universal algebra, dominion, closed algebra, projective property, nilpotent group.
@article{AL_2008_47_5_a1,
     author = {A. I. Budkin},
     title = {Dominions of universal algebras and projective properties},
     journal = {Algebra i logika},
     pages = {541--557},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Dominions of universal algebras and projective properties
JO  - Algebra i logika
PY  - 2008
SP  - 541
EP  - 557
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_5_a1/
LA  - ru
ID  - AL_2008_47_5_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Dominions of universal algebras and projective properties
%J Algebra i logika
%D 2008
%P 541-557
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_5_a1/
%G ru
%F AL_2008_47_5_a1
A. I. Budkin. Dominions of universal algebras and projective properties. Algebra i logika, Tome 47 (2008) no. 5, pp. 541-557. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a1/