Dominions of universal algebras and projective properties
Algebra i logika, Tome 47 (2008) no. 5, pp. 541-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a universal algebra and $H$ its subalgebra. The dominion of $H$ in $A$ (in a class $\mathcal M$) is the set of all elements $a\in A$ such that every pair of homomorphisms $f,g\colon A\to M\in\mathcal M$ satisfies the following: if $f$ and $g$ coincide on $H$, then $f(a)=g(a)$. A dominion is a closure operator on a set of subalgebras of a given algebra. The present account treats of closed subalgebras, i.e., those subalgebras $H$ whose dominions coincide with $H$. We introduce projective properties of quasivarieties which are similar to the projective Beth properties dealt with in nonclassical logics, and provide a characterization of closed algebras in the language of the new properties. It is also proved that in every quasivariety of torsion-free nilpotent groups of class at most 2, a divisible Abelian subgroup $H$ is closed in each group $\langle H,a\rangle$ generated by one element modulo $H$.
Keywords: universal algebra, dominion, closed algebra, projective property, nilpotent group.
@article{AL_2008_47_5_a1,
     author = {A. I. Budkin},
     title = {Dominions of universal algebras and projective properties},
     journal = {Algebra i logika},
     pages = {541--557},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_5_a1/}
}
TY  - JOUR
AU  - A. I. Budkin
TI  - Dominions of universal algebras and projective properties
JO  - Algebra i logika
PY  - 2008
SP  - 541
EP  - 557
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_5_a1/
LA  - ru
ID  - AL_2008_47_5_a1
ER  - 
%0 Journal Article
%A A. I. Budkin
%T Dominions of universal algebras and projective properties
%J Algebra i logika
%D 2008
%P 541-557
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_5_a1/
%G ru
%F AL_2008_47_5_a1
A. I. Budkin. Dominions of universal algebras and projective properties. Algebra i logika, Tome 47 (2008) no. 5, pp. 541-557. http://geodesic.mathdoc.fr/item/AL_2008_47_5_a1/

[1] J. R. Isbell, “Epimorphisms and dominions”, Proc. conf. categor. algebra (La Jolla, 1965), Lange, Springer, New York, 1966, 232–246 | MR

[2] J. R. Isbell, “Epimorphisms and dominions. IV”, J. Lond. Math. Soc. (2), 1 (1969), 265–273 | DOI | MR | Zbl

[3] A. Magidin, “Dominions in varieties of nilpotent groups”, Commun. Algebra, 28:3 (2000), 1241–1270 | DOI | MR | Zbl

[4] B. Mitchell, “The dominion of Isbell”, Trans. Am. Math. Soc., 167 (1972), 319–331 | DOI | MR | Zbl

[5] D. Saracino, “Amalgamation bases for nil-2 groups”, Algebra Univers., 16 (1983), 47–62 | DOI | MR | Zbl

[6] H. E. Scheiblich, “On epics and dominions of bands”, Semigroup Forum, 13 (1976/77), 103–114 | DOI | MR

[7] A. I. Budkin, “Dominions in quasivarieties of universal algebras”, Stud. Log., 78:1–2 (2004), 107–127 | DOI | MR | Zbl

[8] P. M. Higgins, “Epimorphisms and amalgams”, Colloq. Math., 56:1 (1988), 1–17 | MR | Zbl

[9] A. I. Maltsev, “Kvaziprimitivnye klassy abstraktnykh algebr”, Dokl. AN SSSR, 108:2 (1956), 187–189

[10] S. A. Shakhova, “O reshetkakh dominionov v kvazimnogoobraziyakh abelevykh grupp”, Algebra i logika, 44:2 (2005), 238–251 | MR | Zbl

[11] S. A. Shakhova, “Usloviya distributivnosti reshetok dominionov v kvazimnogoobraziyakh abelevykh grupp”, Algebra i logika, 45:4 (2006), 484–499 | MR | Zbl

[12] A. I. Budkin, “Reshetki dominionov universalnykh algebr”, Algebra i logika, 46:1 (2007), 26–45 | MR | Zbl

[13] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistva Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl

[14] L. L. Maksimova, “Proektivnye svoistva Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333 | MR | Zbl

[15] L. L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Logic, 105:1–3 (2000), 83–102 | DOI | MR | Zbl

[16] L. L. Maksimova, “Ogranichennaya interpolyatsiya i proektivnoe svoistvo Beta v ekvatsionalnoi logike”, Algebra i logika, 42:6 (2003), 712–726 | MR

[17] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sib. shkola algebry i logiki, Nauchnaya kniga (IDMI), Novosibirsk, 1999 | Zbl

[18] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[19] A. I. Budkin, Kvazimnogoobraziya grupp, Izd-vo Alt. un-ta, Barnaul, 2002

[20] A. I. Budkin, V. A. Gorbunov, “K teorii kvazimnogoobrazii algebraicheskikh sistem”, Algebra i logika, 14:2 (1975) | MR | Zbl

[21] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl