Polygons with primitive normal and additive theories
Algebra i logika, Tome 47 (2008) no. 4, pp. 491-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, primitive normal, primitive connected, and additive theories of $S$-polygons were studied. In particular, it was proved that the class of all $S$-polygons is primitive normal iff $S$ is a linearly ordered monoid. The present paper is a continuation of this research. Here, Spolygons with primitive normal, additive, and antiadditive theories are described in the language of a primitive equivalence structure. It is shown that the class of all $S$-polygons is antiadditive only for a linearly ordered monoid $S$, that is, this class is antiadditive iff it is primitive normal.
Mots-clés : polygon
Keywords: primitive normal theory, additive theory, antiadditive theory.
@article{AL_2008_47_4_a5,
     author = {A. A. Stepanova},
     title = {Polygons with primitive normal and additive theories},
     journal = {Algebra i logika},
     pages = {491--508},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_4_a5/}
}
TY  - JOUR
AU  - A. A. Stepanova
TI  - Polygons with primitive normal and additive theories
JO  - Algebra i logika
PY  - 2008
SP  - 491
EP  - 508
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_4_a5/
LA  - ru
ID  - AL_2008_47_4_a5
ER  - 
%0 Journal Article
%A A. A. Stepanova
%T Polygons with primitive normal and additive theories
%J Algebra i logika
%D 2008
%P 491-508
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_4_a5/
%G ru
%F AL_2008_47_4_a5
A. A. Stepanova. Polygons with primitive normal and additive theories. Algebra i logika, Tome 47 (2008) no. 4, pp. 491-508. http://geodesic.mathdoc.fr/item/AL_2008_47_4_a5/

[1] A. A. Stepanova, “Primitivno svyaznye i additivnye teorii poligonov”, Algebra i logika, 45:3 (2006), 300–313 | MR | Zbl

[2] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl