Recognition by spectrum for finite linear groups over fields of characteristic 2
Algebra i logika, Tome 47 (2008) no. 4, pp. 405-427

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. For every finite simple linear group $L=L_n(2^k)$, where $11\le n\le18$ or $n>24$, we describe finite groups having the same spectrum as $L$, prove that the number of pairwise nonisomorphic groups with this property is finite, and derive an explicit formula for calculating this number.
Keywords: finite simple group, linear group, order of element, spectrum of group, recognition by spectrum.
@article{AL_2008_47_4_a0,
     author = {M. A. Grechkoseeva},
     title = {Recognition by spectrum for finite linear groups over fields of characteristic~2},
     journal = {Algebra i logika},
     pages = {405--427},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_4_a0/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
TI  - Recognition by spectrum for finite linear groups over fields of characteristic 2
JO  - Algebra i logika
PY  - 2008
SP  - 405
EP  - 427
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_4_a0/
LA  - ru
ID  - AL_2008_47_4_a0
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%T Recognition by spectrum for finite linear groups over fields of characteristic 2
%J Algebra i logika
%D 2008
%P 405-427
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_4_a0/
%G ru
%F AL_2008_47_4_a0
M. A. Grechkoseeva. Recognition by spectrum for finite linear groups over fields of characteristic 2. Algebra i logika, Tome 47 (2008) no. 4, pp. 405-427. http://geodesic.mathdoc.fr/item/AL_2008_47_4_a0/