Recognition by spectrum for finite linear groups over fields of characteristic~2
Algebra i logika, Tome 47 (2008) no. 4, pp. 405-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectrum of a finite group is the set of its element orders. For every finite simple linear group $L=L_n(2^k)$, where $11\le n\le18$ or $n>24$, we describe finite groups having the same spectrum as $L$, prove that the number of pairwise nonisomorphic groups with this property is finite, and derive an explicit formula for calculating this number.
Keywords: finite simple group, linear group, order of element, spectrum of group, recognition by spectrum.
@article{AL_2008_47_4_a0,
     author = {M. A. Grechkoseeva},
     title = {Recognition by spectrum for finite linear groups over fields of characteristic~2},
     journal = {Algebra i logika},
     pages = {405--427},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_4_a0/}
}
TY  - JOUR
AU  - M. A. Grechkoseeva
TI  - Recognition by spectrum for finite linear groups over fields of characteristic~2
JO  - Algebra i logika
PY  - 2008
SP  - 405
EP  - 427
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_4_a0/
LA  - ru
ID  - AL_2008_47_4_a0
ER  - 
%0 Journal Article
%A M. A. Grechkoseeva
%T Recognition by spectrum for finite linear groups over fields of characteristic~2
%J Algebra i logika
%D 2008
%P 405-427
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_4_a0/
%G ru
%F AL_2008_47_4_a0
M. A. Grechkoseeva. Recognition by spectrum for finite linear groups over fields of characteristic~2. Algebra i logika, Tome 47 (2008) no. 4, pp. 405-427. http://geodesic.mathdoc.fr/item/AL_2008_47_4_a0/

[1] V. D. Mazurov, “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta, 2005, no. 36 (Matem. mekhan., vyp. 7), 119–138 | MR

[2] W. Shi, “A characteristic property of $J_1$ and $PSL_2(2^n)$”, Adv. Math., 16 (1987), 397–401 (Chinese) | Zbl

[3] F. J. Liu, “A characteristic property of projective special linear group $L_3(8)$”, J. Southwest-China Normal Univ., 22:2 (1997), 131–134 (Chinese)

[4] V. D. Mazurov, M. Ch. Su, Kh. P. Chao, “Raspoznavanie konechnykh prostykh grupp $L_3(2^m)$ i $U_3(2^m)$ po poryadkam ikh elementov”, Algebra i logika, 39:5 (2000), 567–585 | MR | Zbl

[5] V. D. Mazurov, G. Yu. Chen, “Raspoznavaemost po spektru konechnykh prostykh grupp $L_4(2^m)$ i $U_4(2^m)$”, Algebra i logika, 47:1 (2008), 83–93 | MR

[6] M. A. Grechkoseeva, W. J. Shi, A. V. Vasilev, “Recognition by spectrum of $L_{16}(2^m)$”, Algebra Colloq., 14:4 (2007), 585–591 | MR | Zbl

[7] A. V. Vasilev, M. A. Grechkoseeva, “O raspoznavanii po spektru konechnykh prostykh lineinykh grupp nad polyami kharakteristiki 2”, Sib. matem. zh., 46:4 (2005), 749–758 | MR | Zbl

[8] M. A. Grechkoseeva, M. S. Lucido, V. D. Mazurov, A. R. Moghaddamfar, A. V. Vasil'ev, “On recognition of the projective special linear groups over the binary field”, Sib. elektron. matem. izv., 2 (2005), 253–263 ; http//: semr.math.nsc.ru | MR | Zbl

[9] A. V. Zavarnitsin, V. D. Mazurov, “Poryadki elementov v nakrytiyakh konechnykh prostykh lineinykh i unitarnykh grupp i raspoznavaemost $L_n(2)$ po spektru”, Doklady RAN, 409:6 (2006), 736–739 | MR | Zbl

[10] A. V. Zavarnitsin, Poryadki elementov v nakrytiyakh grupp $L_n(q)$ i raspoznavaemost znakoperemennoi gruppy $A_{16}$, preprint No 48, NIIDMI, Novosibirsk, 2000

[11] A. V. Zavarnitsin, V. D. Mazurov, “O poryadkakh elementov v nakrytiyakh prostykh grupp $L_n(q)$ i $U_n(q)$”, Trudy In-ta matem. mekhan. UNTs RAN, 13:1 (2007), 89–98

[12] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[13] A. V. Vasilev, “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami eë grafa prostykh chisel”, Sib. matem. zh., 46:3 (2005), 511–522 | MR | Zbl

[14] V. D. Mazurov, “Kharakterizatsiya konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[15] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3 (1892), 265–284 | DOI | MR

[16] A. A. Buturlakin, M. A. Grechkoseeva, “Tsiklicheskoe stroenie maksimalnykh torov v konechnykh klassicheskikh gruppakh”, Algebra i logika, 46:2 (2007), 129–156 | MR

[17] D. I. Deriziotis, A. P. Fakiolas, “The maximal tori in the finite Chevalley groups of type $E_6$, $E_7$ and $E_8$”, Commun. Algebra, 19:3 (1991), 889–903 | DOI | MR | Zbl

[18] A. V. Zavarnitsin, “Raspoznavanie prostykh grupp $U_3(q)$ po poryadkam elementov”, Algebra i logika, 45:2 (2006), 185–202 | MR | Zbl

[19] A. A. Buturlakin, “Spektry konechnykh lineinykh i unitarnykh grupp”, Algebra i logika, 47:2 (2008), 157–173 | MR

[20] A. V. Zavarnitsine, “Recognition of the simple groups $L_3(q)$ by element orders”, J. Group Theory, 7:1 (2004), 81–97 | DOI | MR | Zbl

[21] A. V. Vasilev, E. P. Vdovin, “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[22] D. M. Testerman, “$A_1$-Type overgroups of elements of order $p$ in semisimple algebraic groups and the associated finite groups”, J. Algebra, 177:1 (1995), 34–76 | DOI | MR | Zbl

[23] R. Steinberg, “Automorphisms of finite linear groups”, Can. J. Math., 12:4 (1960), 606–615 | MR | Zbl

[24] M. Aschbacher, G. M. Seitz, “Involutions in Chevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | MR | Zbl