Periodic groups saturated by finite simple groups $U_3(2^m)$
Algebra i logika, Tome 47 (2008) no. 3, pp. 288-306

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak M$ be a set of finite groups. A group $G$ is said to be saturated by the groups in $\mathfrak M$ if every finite subgroup of $G$ is contained in a subgroup isomorphic to a member of $\mathfrak M$. It is proved that a periodic group $G$ saturated by groups in a set $\{U_3(2^m)\mid m=1,2,\dots\}$ is isomorphic to $U_3(Q)$ for some locally finite field $Q$ of characteristic 2; in particular, $G$ is locally finite.
Keywords: periodic group, finite group, saturated group.
@article{AL_2008_47_3_a1,
     author = {D. V. Lytkina and L. R. Tukhvatullina and K. A. Filippov},
     title = {Periodic groups saturated by finite simple groups~$U_3(2^m)$},
     journal = {Algebra i logika},
     pages = {288--306},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_3_a1/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - L. R. Tukhvatullina
AU  - K. A. Filippov
TI  - Periodic groups saturated by finite simple groups $U_3(2^m)$
JO  - Algebra i logika
PY  - 2008
SP  - 288
EP  - 306
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_3_a1/
LA  - ru
ID  - AL_2008_47_3_a1
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A L. R. Tukhvatullina
%A K. A. Filippov
%T Periodic groups saturated by finite simple groups $U_3(2^m)$
%J Algebra i logika
%D 2008
%P 288-306
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_3_a1/
%G ru
%F AL_2008_47_3_a1
D. V. Lytkina; L. R. Tukhvatullina; K. A. Filippov. Periodic groups saturated by finite simple groups $U_3(2^m)$. Algebra i logika, Tome 47 (2008) no. 3, pp. 288-306. http://geodesic.mathdoc.fr/item/AL_2008_47_3_a1/