Periodic groups saturated by finite simple groups~$U_3(2^m)$
Algebra i logika, Tome 47 (2008) no. 3, pp. 288-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak M$ be a set of finite groups. A group $G$ is said to be saturated by the groups in $\mathfrak M$ if every finite subgroup of $G$ is contained in a subgroup isomorphic to a member of $\mathfrak M$. It is proved that a periodic group $G$ saturated by groups in a set $\{U_3(2^m)\mid m=1,2,\dots\}$ is isomorphic to $U_3(Q)$ for some locally finite field $Q$ of characteristic 2; in particular, $G$ is locally finite.
Keywords: periodic group, finite group, saturated group.
@article{AL_2008_47_3_a1,
     author = {D. V. Lytkina and L. R. Tukhvatullina and K. A. Filippov},
     title = {Periodic groups saturated by finite simple groups~$U_3(2^m)$},
     journal = {Algebra i logika},
     pages = {288--306},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_3_a1/}
}
TY  - JOUR
AU  - D. V. Lytkina
AU  - L. R. Tukhvatullina
AU  - K. A. Filippov
TI  - Periodic groups saturated by finite simple groups~$U_3(2^m)$
JO  - Algebra i logika
PY  - 2008
SP  - 288
EP  - 306
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_3_a1/
LA  - ru
ID  - AL_2008_47_3_a1
ER  - 
%0 Journal Article
%A D. V. Lytkina
%A L. R. Tukhvatullina
%A K. A. Filippov
%T Periodic groups saturated by finite simple groups~$U_3(2^m)$
%J Algebra i logika
%D 2008
%P 288-306
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_3_a1/
%G ru
%F AL_2008_47_3_a1
D. V. Lytkina; L. R. Tukhvatullina; K. A. Filippov. Periodic groups saturated by finite simple groups~$U_3(2^m)$. Algebra i logika, Tome 47 (2008) no. 3, pp. 288-306. http://geodesic.mathdoc.fr/item/AL_2008_47_3_a1/

[1] A. K. Shlëpkin, “O nekotorykh periodicheskikh gruppakh, nasyschennykh konechnymi prostymi podgruppami”, Matem. trudy, 1:1 (1998), 129–138 | MR | Zbl

[2] Nereshënnye voprosy teorii grupp. Kourovskaya tetrad, 16-e izd., In-t matem. SO RAN, Novosibirsk, 2006; http://www.math.nsc.ru/~alglog

[3] K. A. Filippov, Gruppy, nasyschennye konechnymi neabelevymi prostymi gruppami i ikh tsentralnymi rasshireniyami, Dis. ... kand. fiz-mat. nauk, Krasnoyarsk, 2005

[4] D. V. Lytkina, K. A. Filippov, “O periodicheskikh gruppakh, nasyschennykh $L_2(q)$ i eë tsentralnymi rasshireniyami”, Matem. sistemy, 5 (2006), 35–45

[5] D. V. Lytkina, V. D. Mazurov, “Periodicheskie gruppy, nasyschennye gruppami $L_3(2^m)$”, Algebra i logika, 46:5 (2007), 606–626 | MR

[6] V. V. Belyaev, “Lokalno konechnye gruppy Shevalle”, Issledovaniya po teorii grupp, UNTs AN SSSR, Sverdlovsk, 1984, 39–50 | MR

[7] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493 | Zbl

[8] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. zap. Leningr. gos. un-ta. Ser. matem., 10 (1940), 166–170 | MR | Zbl

[9] D. V. Lytkina, “Stroenie gruppy, poryadki elementov kotoroi ne prevoskhodyat chisla 4”, Sib. matem. zh., 48:2 (2007), 353–358 | MR

[10] W. Feit, J. G. Thompson, “Solvability of groups of odd order”, Pac. J. Math., 13:3 (1963), 775–1029 | MR | Zbl

[11] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl

[12] A. K. Shlëpkin, A. G. Rubashkin, “O gruppakh, nasyschennykh konechnym mnozhestvom grupp”, Sib. matem. zh., 45:6 (2004), 1397–1400 | MR | Zbl

[13] V. D. Mazurov, “O beskonechnykh gruppakh s abelevymi tsentralizatorami involyutsii”, Algebra i logika, 39:1 (2000), 74–86 | MR | Zbl

[14] B. Huppert, Endliche Gruppen. I, Nachdr. d. 1. Aufl., Grundlehren mathem. Wiss., 134, Ser. Comprehensive Stud. Math., Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl