Definable sets in automorphism groups of rational order
Algebra i logika, Tome 47 (2008) no. 2, pp. 215-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is describing all definable subsets in the group $\operatorname{Aut}\langle\mathbb Q,\le\rangle$ of all automorphisms of the natural ordering on the rational numbers, and also in groups of the form $\operatorname{Aut}_\mathbf I\langle\mathbb Q,\le\rangle$, where $\mathbf I$ is a Turing ideal consisting of elements of $\operatorname{Aut}\langle\mathbb Q,\le\rangle$ whose Turing degree is contained in $\mathbf I$. This description is properly a uniform method for proving definability of all basic properties appearing in works on the theory of groups $\operatorname{Aut}_\mathbf I\langle\mathbb Q,\le\rangle$, as well as definability of a number of new sets. Also, we describe automorphism groups for such groups $\operatorname{Aut}_\mathbf I\langle\mathbb Q,\le\rangle$ and state a number of structure properties for elementary subgroups in $\operatorname{Aut}\langle\mathbb Q,\le\rangle$.
Keywords: rational order
Mots-clés : automorphism group, definable set.
@article{AL_2008_47_2_a5,
     author = {A. S. Morozov},
     title = {Definable sets in automorphism groups of rational order},
     journal = {Algebra i logika},
     pages = {215--239},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_2_a5/}
}
TY  - JOUR
AU  - A. S. Morozov
TI  - Definable sets in automorphism groups of rational order
JO  - Algebra i logika
PY  - 2008
SP  - 215
EP  - 239
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_2_a5/
LA  - ru
ID  - AL_2008_47_2_a5
ER  - 
%0 Journal Article
%A A. S. Morozov
%T Definable sets in automorphism groups of rational order
%J Algebra i logika
%D 2008
%P 215-239
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_2_a5/
%G ru
%F AL_2008_47_2_a5
A. S. Morozov. Definable sets in automorphism groups of rational order. Algebra i logika, Tome 47 (2008) no. 2, pp. 215-239. http://geodesic.mathdoc.fr/item/AL_2008_47_2_a5/

[1] J. K. Truss, “On recovering structures from quotients of their automorphism groups”, Ordered groups and infinite permutation groups, Partially based on the conference (Luminy, France, Summer 1993), Math. Appl., Dordr., 354, ed. W. Ch. Holland, Kluwer Acad. Publ., Dordrecht, 1996, 63–95 | MR | Zbl

[2] A. M. W. Glass, Ordered permutation groups, Lond. Math. Soc. Lect. Note Ser., 55, Cambridge Univ. Press, Cambridge etc., 1981 | MR | Zbl

[3] M. Jambu-Giraudet, “Interprétations d'arithmétiques dans des groupes et des treillis”, Model theory and arithmetic, Proc. (Paris 1979/80), Lect. Notes Math., 890, 1981, 143–153 | MR | Zbl

[4] M. Jambu-Giraudet, Théorie des modelès de groupes d'automorphismes d'ensembles totalement ordonnés, Thèse de troisième cycle, Univ. Paris VII, 1979

[5] A. M. W. Glass, Yu. Gurevich, W. Ch. Holland, M. Jambu-Giraudet, “Elementary theory of automorphism groups of doubly homogeneous chains”, Logic year 1979–80, Univ. Conn./USA, Lect. Notes Math., 859, 1981, 67–82 | MR | Zbl

[6] A. S. Morozov, “Group $\operatorname{Aut}_r\langle\mathbb Q,\rangle$ is not constructivizable”, Math. Notes, 36:4 (1984), 733–736 | MR | Zbl

[7] A. Morozov, R. Solomon, S. Lempp, C. McCoy, “Group theoretic properties of the group of computable automorphisms of a countable dense linear order”, Order, 19:4 (2002), 343–364 | DOI | MR | Zbl

[8] J. Truss, A. Morozov, “On computable automorphisms of the rational numbers”, J. Symb. Log., 66:3 (2001), 1458–1470 | DOI | MR | Zbl

[9] J. Truss, A. Morozov, On the categoricity of the group of all computable automorphisms of the rational numbers, Preprint 11, Univ. Leeds, 2005 | MR

[10] P. Odifreddi, Classical recursion theory. The theory of functions and sets of natural numbers, Stud. Log. Found. Math., 125, North-Holland, Amsterdam etc., 1989 | MR | Zbl

[11] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill Publ. Co., Maidenhead, Berksh., 1967 | MR | Zbl

[12] A. S. Morozov, “Elementarnye podmodeli parametrizuemykh modelei”, Sib. matem. zh., 47:3 (2006), 595–612 | MR | Zbl