A weak form of interpolation in equational logic
Algebra i logika, Tome 47 (2008) no. 1, pp. 94-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of a weak interpolation property and of weak amalgamation are introduced. It is proved that in varieties with the congruence extension property, the weak interpolation property is equivalent to the weak amalgamation property. In turn, weak amalgamability of a variety is equivalent to amalgamability of a class of finitely generated simple algebras in this variety.
Keywords: weak interpolation property, weak amalgamation, variety with congruence extension property.
@article{AL_2008_47_1_a5,
     author = {L. L. Maksimova},
     title = {A weak form of interpolation in equational logic},
     journal = {Algebra i logika},
     pages = {94--107},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_1_a5/}
}
TY  - JOUR
AU  - L. L. Maksimova
TI  - A weak form of interpolation in equational logic
JO  - Algebra i logika
PY  - 2008
SP  - 94
EP  - 107
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_1_a5/
LA  - ru
ID  - AL_2008_47_1_a5
ER  - 
%0 Journal Article
%A L. L. Maksimova
%T A weak form of interpolation in equational logic
%J Algebra i logika
%D 2008
%P 94-107
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_1_a5/
%G ru
%F AL_2008_47_1_a5
L. L. Maksimova. A weak form of interpolation in equational logic. Algebra i logika, Tome 47 (2008) no. 1, pp. 94-107. http://geodesic.mathdoc.fr/item/AL_2008_47_1_a5/

[1] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[2] L. Maksimova, “Interpolation and joint consistency”, We will show them! Essays in honour of Dov Gabbay, vol. 2, eds. S. Artemov, H. Barringer, A. d'Avila Garcez, L. Lamb, J. Woods, King's College Publ., London, 2005, 293–305

[3] B. Jonsson, “Extensions of relational structures”, Theory of models, Proc. 1963 int. symp. Berkeley, North-Holland Publ., Amsterdam, 1965, 146–157 | MR

[4] D. Pigozzi, “Amalgamation, congruence extension and interpolation properties in algebras”, Algebra Univers., 1:3 (1972), 269–349 | MR | Zbl

[5] P. D. Bacsich, “Amalgamation properties and interpolation theorems for equational theories”, Algebra Univers., 5:1 (1975), 45–55 | DOI | MR | Zbl

[6] J. Barwise, S. Feferman (eds.), Model-theoretic logics, Springer–Verlag, New York, 1985 | MR

[7] A. Wronski, “On a form of equational interpolation property”, Foundations of logic and linguistics. Problems and solution, Sel. pap. 7th int. congr. Logic, Methodol. Philos. Sci. (Salzburg/Austria, 1983), Plenum Press, London, 1985, 23–29 | MR

[8] H. Ono, “Interpolation and the Robinson property for logics not closed under the Boolean operations”, Algebra Univers., 23:2 (1986), 111–122 | DOI | MR | Zbl

[9] I. Sain, “Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic”, Algebraic logic and universal algebra in computer science, Lect. Notes Comput. Sci., 425, eds. C. H. Bergman, R. D. Maddux, D. I. Pigozzi, Springer–Verlag, Berlin, 1990, 209–226 | MR

[10] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistvo Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl

[11] J. Czelakowski, D. Pigozzi, “Amalgamation and interpolation in abstract algebraic logic”, Models, algebras and proofs, Sel. papers X Latin Am. symp. math. logic held Bogota, Lect. Notes Pure Appl. Math., 203, eds. X. Caicedo, C. H.Montenegros, Marcel Dekker, New York, 1999, 187–265 | MR | Zbl

[12] E. Hoogland, Definability and interpolation: Model-theoretic investigations, ILLC Diss. Ser. DS-2001-05, Amsterdam, 2001

[13] D. M. Gabbay, L. Maksimova, Interpolation and definability: Modal and intuitionistic logics, Oxford Univ. Press, Oxford, 2005 | MR

[14] L. L. Maksimova, “Ogranichennaya interpolyatsiya i proektivnoe svoistvo Beta v ekvatsionalnoi logike”, Algebra i logika, 42:6 (2003), 712–726 | MR

[15] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[16] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh i amalgamiruemye mnogoobraziya topobulevykh algebr”, Algebra i logika, 18:5 (1979), 556–586 | MR | Zbl

[17] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh. Dostatochnye usloviya”, Algebra i logika, 19:2 (1980), 194–213 | MR | Zbl

[18] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl

[19] L. L. Maksimova, “Kontinuum normalnykh rasshirenii modalnoi logiki dokazuemosti s interpolyatsionnym svoistvom”, Sib. matem. zh., 30:6 (1989), 122–131 | MR | Zbl

[20] G. Grätzer, H. Lakser, “The structure of pseudocomplemented distributive lattices. II: Congruence extension and amalgamation”, Trans. Am. Math. Soc., 156 (1971), 343–358 | DOI | MR | Zbl