Cayley polynomials
Algebra i logika, Tome 47 (2008) no. 1, pp. 54-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a polynomial version of the Cayley numbers. Namely, a ring of Cayley polynomials is defined in terms of generators and relations in the category of alternative algebras. The ring turns out to be an octonion algebra over an ordinary polynomial ring. Also, a localization (a ring of quotients) of the ring of Cayley polynomials gives another description of an octonion torus. Finally, we find a subalgebra of a prime nondegenerate alternative algebra which is an octonion algebra over its center.
Keywords: alternative algebra, ring of Cayley polynomials, octonion algebra.
@article{AL_2008_47_1_a2,
     author = {Y. Yoshii},
     title = {Cayley polynomials},
     journal = {Algebra i logika},
     pages = {54--70},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2008_47_1_a2/}
}
TY  - JOUR
AU  - Y. Yoshii
TI  - Cayley polynomials
JO  - Algebra i logika
PY  - 2008
SP  - 54
EP  - 70
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2008_47_1_a2/
LA  - ru
ID  - AL_2008_47_1_a2
ER  - 
%0 Journal Article
%A Y. Yoshii
%T Cayley polynomials
%J Algebra i logika
%D 2008
%P 54-70
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2008_47_1_a2/
%G ru
%F AL_2008_47_1_a2
Y. Yoshii. Cayley polynomials. Algebra i logika, Tome 47 (2008) no. 1, pp. 54-70. http://geodesic.mathdoc.fr/item/AL_2008_47_1_a2/

[1] B. Allison, S. Azam, S. Berman, Y. Gao, A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Am. Math. Soc., 126, {No 603}, Am. Math. Soc., Providence, RI, 1997 | MR

[2] E. Neher, “Lie tori”, C. R. Math. Acad. Sci., Soc. R. Can., 26:3 (2004), 84–89 | MR | Zbl

[3] Y. Yoshii, “Root systems extended by an abelian group and their Lie algebras”, J. Lie Theory, 14:2 (2004), 371–394 | MR | Zbl

[4] S. Berman, Y. Gao, Y. Krylyuk, E. Neher, “The alternative torus and the structure of elliptic quasi-simple Lie algebras of type $A_2$”, Trans. Am. Math. Soc., 347:11 (1995), 4315–4363 | DOI | MR | Zbl

[5] B. Allison, Y. Gao, “The root system and the core of an extended affine Lie algebra”, Sel. Math., New Ser., 7:2 (2001), 149–212 | DOI | MR | Zbl

[6] G. Benkart, Y. Yoshii, “Lie $G$-tori of symplectic type”, Quart. J. Math., Oxford, 57:4 (2006), 425–448 | DOI | MR

[7] Y. Yoshii, “Classification of division $\mathbb Z^n$-graded alternative algebras”, J. Algebra, 256:1 (2002), 28–50 | DOI | MR | Zbl

[8] Y. Yoshii, “Lie tori – a simple characterization of extended affine Lie algebras”, Publ. Res. Inst. Math. Sci., 42:3 (2006), 739–762 | DOI | MR | Zbl

[9] S. V. Polikarpov, I. P. Shestakov, “Neassotsiativnye affinnye algebry”, Algebra i logika, 29:6 (1990), 709–723 | MR

[10] A. V. Iltyakov, “Svobodnye alternativnye algebry ranga 3”, Algebra i logika, 23:2 (1984), 136–158 | MR

[11] A. V. Iltyakov, “Shpekhtovy idealy tozhdestv nekotorykh prostykh neassotsiativnykh algebr”, Algebra i logika, 24:3 (1985), 327–351 | MR

[12] K. McCrimmon, “Nonassociative algebras with scalar involution”, Pac. J. Math., 116:1 (1985), 85–109 | MR | Zbl

[13] K. A. Zhevlakov, A. M. Slinko, I. P. Shestakov, A. I. Shirshov, Koltsa, blizkie k assotsiativnym, Nauka, M., 1978 | MR | Zbl